Cargando…
Injectable polymeric nanoparticle hydrogel system for long-term anti-inflammatory effect to treat osteoarthritis
Treatment of osteoarthritis (OA) by administration of corticosteroids is a commonly used method in clinics using anti-inflammatory medicine. Oral administration or intra-articular injection of corticosteroids can reduce the pain and progress of cartilage degeneration, but they are usually insufficie...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
KeAi Publishing
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8377411/ https://www.ncbi.nlm.nih.gov/pubmed/34466714 http://dx.doi.org/10.1016/j.bioactmat.2021.05.028 |
_version_ | 1783740653791870976 |
---|---|
author | Seo, Bo-Bae Kwon, Youngjoong Kim, Jun Hong, Ki Hyun Kim, Sung-Eun Song, Hae-Ryong Kim, Young-Min Song, Soo-Chang |
author_facet | Seo, Bo-Bae Kwon, Youngjoong Kim, Jun Hong, Ki Hyun Kim, Sung-Eun Song, Hae-Ryong Kim, Young-Min Song, Soo-Chang |
author_sort | Seo, Bo-Bae |
collection | PubMed |
description | Treatment of osteoarthritis (OA) by administration of corticosteroids is a commonly used method in clinics using anti-inflammatory medicine. Oral administration or intra-articular injection of corticosteroids can reduce the pain and progress of cartilage degeneration, but they are usually insufficient to show local and long-term anti-inflammatory effects because of their fast clearance in the body. In this study, we suggest an injectable anti-OA drug depot system for sustained drug release that provides long-term effective therapeutic advantages. Amphiphilic poly(organophosphazene), which has temperature-dependent nanoparticle forming and sol-gel transition behaviors when dissolved in aqueous solution, was synthesized for triamcinolone acetonide (TCA) delivery. Because hydrophobic parts of the polymer can interact with hydrophobic parts of the TCA, the TCA was encapsulated into the self-assembled polymeric nanoparticles. The TCA-encapsulated polymeric nanoparticles (TePNs) were well dispersed in an aqueous solution below room temperature so that they can be easily injected as a sol state into an intra-articular region. However, the TePNs solution transforms immediately to a viscose 3D hydrogel like a synovial fluid in the intra-articular region via the conducted body temperature. An in vitro TCA release study showed sustained TCA release for six weeks. One-time injection of the TePN hydrogel system in an early stage of OA-induced rat model showed a great inhibition effect against further OA progression. The OA-induced knees completely recovered as a healthy cartilage without any abnormal symptoms. |
format | Online Article Text |
id | pubmed-8377411 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | KeAi Publishing |
record_format | MEDLINE/PubMed |
spelling | pubmed-83774112021-08-30 Injectable polymeric nanoparticle hydrogel system for long-term anti-inflammatory effect to treat osteoarthritis Seo, Bo-Bae Kwon, Youngjoong Kim, Jun Hong, Ki Hyun Kim, Sung-Eun Song, Hae-Ryong Kim, Young-Min Song, Soo-Chang Bioact Mater Article Treatment of osteoarthritis (OA) by administration of corticosteroids is a commonly used method in clinics using anti-inflammatory medicine. Oral administration or intra-articular injection of corticosteroids can reduce the pain and progress of cartilage degeneration, but they are usually insufficient to show local and long-term anti-inflammatory effects because of their fast clearance in the body. In this study, we suggest an injectable anti-OA drug depot system for sustained drug release that provides long-term effective therapeutic advantages. Amphiphilic poly(organophosphazene), which has temperature-dependent nanoparticle forming and sol-gel transition behaviors when dissolved in aqueous solution, was synthesized for triamcinolone acetonide (TCA) delivery. Because hydrophobic parts of the polymer can interact with hydrophobic parts of the TCA, the TCA was encapsulated into the self-assembled polymeric nanoparticles. The TCA-encapsulated polymeric nanoparticles (TePNs) were well dispersed in an aqueous solution below room temperature so that they can be easily injected as a sol state into an intra-articular region. However, the TePNs solution transforms immediately to a viscose 3D hydrogel like a synovial fluid in the intra-articular region via the conducted body temperature. An in vitro TCA release study showed sustained TCA release for six weeks. One-time injection of the TePN hydrogel system in an early stage of OA-induced rat model showed a great inhibition effect against further OA progression. The OA-induced knees completely recovered as a healthy cartilage without any abnormal symptoms. KeAi Publishing 2021-07-07 /pmc/articles/PMC8377411/ /pubmed/34466714 http://dx.doi.org/10.1016/j.bioactmat.2021.05.028 Text en © 2021 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Article Seo, Bo-Bae Kwon, Youngjoong Kim, Jun Hong, Ki Hyun Kim, Sung-Eun Song, Hae-Ryong Kim, Young-Min Song, Soo-Chang Injectable polymeric nanoparticle hydrogel system for long-term anti-inflammatory effect to treat osteoarthritis |
title | Injectable polymeric nanoparticle hydrogel system for long-term anti-inflammatory effect to treat osteoarthritis |
title_full | Injectable polymeric nanoparticle hydrogel system for long-term anti-inflammatory effect to treat osteoarthritis |
title_fullStr | Injectable polymeric nanoparticle hydrogel system for long-term anti-inflammatory effect to treat osteoarthritis |
title_full_unstemmed | Injectable polymeric nanoparticle hydrogel system for long-term anti-inflammatory effect to treat osteoarthritis |
title_short | Injectable polymeric nanoparticle hydrogel system for long-term anti-inflammatory effect to treat osteoarthritis |
title_sort | injectable polymeric nanoparticle hydrogel system for long-term anti-inflammatory effect to treat osteoarthritis |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8377411/ https://www.ncbi.nlm.nih.gov/pubmed/34466714 http://dx.doi.org/10.1016/j.bioactmat.2021.05.028 |
work_keys_str_mv | AT seobobae injectablepolymericnanoparticlehydrogelsystemforlongtermantiinflammatoryeffecttotreatosteoarthritis AT kwonyoungjoong injectablepolymericnanoparticlehydrogelsystemforlongtermantiinflammatoryeffecttotreatosteoarthritis AT kimjun injectablepolymericnanoparticlehydrogelsystemforlongtermantiinflammatoryeffecttotreatosteoarthritis AT hongkihyun injectablepolymericnanoparticlehydrogelsystemforlongtermantiinflammatoryeffecttotreatosteoarthritis AT kimsungeun injectablepolymericnanoparticlehydrogelsystemforlongtermantiinflammatoryeffecttotreatosteoarthritis AT songhaeryong injectablepolymericnanoparticlehydrogelsystemforlongtermantiinflammatoryeffecttotreatosteoarthritis AT kimyoungmin injectablepolymericnanoparticlehydrogelsystemforlongtermantiinflammatoryeffecttotreatosteoarthritis AT songsoochang injectablepolymericnanoparticlehydrogelsystemforlongtermantiinflammatoryeffecttotreatosteoarthritis |