Cargando…
Editorial: Safe and Trustworthy Machine Learning
Autores principales: | Kailkhura, Bhavya, Chen, Pin-Yu, Lin, Xue, Li, Bo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8377536/ https://www.ncbi.nlm.nih.gov/pubmed/34423287 http://dx.doi.org/10.3389/fdata.2021.731605 |
Ejemplares similares
-
Editorial: Human-Interpretable Machine Learning
por: Tolomei, Gabriele, et al.
Publicado: (2022) -
Editorial: Ethical Machine Learning and Artificial Intelligence
por: Quadrianto, Novi, et al.
Publicado: (2021) -
Editorial: Big Data and machine learning in cancer theranostics
por: da Silva, Fabricio Alves Barbosa, et al.
Publicado: (2022) -
The Bayesian Additive Regression Trees Formula for Safe Machine Learning-Based Intraocular Lens Predictions
por: Clarke, Gerald P., et al.
Publicado: (2020) -
Leveraging Uncertainty from Deep Learning for Trustworthy
Material Discovery Workflows
por: Zhang, Jize, et al.
Publicado: (2021)