Cargando…
An Automatic Deep Learning–Based Workflow for Glioblastoma Survival Prediction Using Preoperative Multimodal MR Images: A Feasibility Study
PURPOSE: Most radiomic studies use the features extracted from the manually drawn tumor contours for classification or survival prediction. However, large interobserver segmentation variations lead to inconsistent features and hence introduce more challenges in constructing robust prediction models....
Autores principales: | Fu, Jie, Singhrao, Kamal, Zhong, Xinran, Gao, Yu, Qi, Sharon X., Yang, Yingli, Ruan, Dan, Lewis, John H. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8377554/ https://www.ncbi.nlm.nih.gov/pubmed/34458648 http://dx.doi.org/10.1016/j.adro.2021.100746 |
Ejemplares similares
-
Multimodal MR Features of 8 Cases of Epithelioid Glioblastoma
por: Zhao, Ji-ping, et al.
Publicado: (2020) -
Automatic Prediction of MGMT Status in Glioblastoma via Deep Learning-Based MR Image Analysis
por: Chen, Xin, et al.
Publicado: (2020) -
Automatic Contour Refinement for Deep Learning Auto-segmentation of Complex Organs in MRI-guided Adaptive Radiation Therapy
por: Ding, Jie, et al.
Publicado: (2022) -
Accuracy of an MR-only workflow for prostate radiotherapy using semi-automatically burned-in fiducial markers
por: Goudschaal, Karin, et al.
Publicado: (2021) -
Exploring deep residual network based features for automatic schizophrenia detection from EEG
por: Siuly, Siuly, et al.
Publicado: (2023)