Cargando…

Effective control of large deletions after double-strand breaks by homology-directed repair and dsODN insertion

BACKGROUND: After repairing double-strand breaks (DSBs) caused by CRISPR-Cas9 cleavage, genomic damage, such as large deletions, may have pathogenic consequences. RESULTS: We show that large deletions are ubiquitous but are dependent on editing sites and cell types. Human primary T cells display mor...

Descripción completa

Detalles Bibliográficos
Autores principales: Wen, Wei, Quan, Zi-Jun, Li, Si-Ang, Yang, Zhi-Xue, Fu, Ya-Wen, Zhang, Feng, Li, Guo-Hua, Zhao, Mei, Yin, Meng-Di, Xu, Jing, Zhang, Jian-Ping, Cheng, Tao, Zhang, Xiao-Bing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8377869/
https://www.ncbi.nlm.nih.gov/pubmed/34416913
http://dx.doi.org/10.1186/s13059-021-02462-4
Descripción
Sumario:BACKGROUND: After repairing double-strand breaks (DSBs) caused by CRISPR-Cas9 cleavage, genomic damage, such as large deletions, may have pathogenic consequences. RESULTS: We show that large deletions are ubiquitous but are dependent on editing sites and cell types. Human primary T cells display more significant deletions than hematopoietic stem and progenitor cells (HSPCs), whereas we observe low levels in induced pluripotent stem cells (iPSCs). We find that the homology-directed repair (HDR) with single-stranded oligodeoxynucleotides (ssODNs) carrying short homology reduces the deletion damage by almost half, while adeno-associated virus (AAV) donors with long homology reduce large deletions by approximately 80%. In the absence of HDR, the insertion of a short double-stranded ODN by NHEJ reduces deletion indexes by about 60%. CONCLUSIONS: Timely bridging of broken ends by HDR and NHEJ vastly decreases the unintended consequences of dsDNA cleavage. These strategies can be harnessed in gene editing applications to attenuate unintended outcomes. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13059-021-02462-4.