Cargando…
Time series analysis of hemorrhagic fever with renal syndrome in mainland China by using an XGBoost forecasting model
BACKGROUND: Hemorrhagic fever with renal syndrome (HFRS) is still attracting public attention because of its outbreak in various cities in China. Predicting future outbreaks or epidemics disease based on past incidence data can help health departments take targeted measures to prevent diseases in ad...
Autores principales: | Lv, Cai-Xia, An, Shu-Yi, Qiao, Bao-Jun, Wu, Wei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8377883/ https://www.ncbi.nlm.nih.gov/pubmed/34412581 http://dx.doi.org/10.1186/s12879-021-06503-y |
Ejemplares similares
-
Comparison of ARIMA model and XGBoost model for prediction of human brucellosis in mainland China: a time-series study
por: Alim, Mirxat, et al.
Publicado: (2020) -
Improving the precision of modeling the incidence of hemorrhagic fever with renal syndrome in mainland China with an ensemble machine learning approach
por: Ye, Guo-hua, et al.
Publicado: (2021) -
Analysis of Hemorrhagic Fever With Renal Syndrome Using Wavelet Tools in Mainland China, 2004–2019
por: Zou, Lu-Xi, et al.
Publicado: (2020) -
Forecasting incidence of hemorrhagic fever with renal syndrome in China using ARIMA model
por: Liu, Qiyong, et al.
Publicado: (2011) -
Application of a data-driven XGBoost model for the prediction of COVID-19 in the USA: a time-series study
por: Fang, Zheng-gang, et al.
Publicado: (2022)