Cargando…
Machine Learning Prediction of Death in Critically Ill Patients With Coronavirus Disease 2019
Critically ill patients with coronavirus disease 2019 have variable mortality. Risk scores could improve care and be used for prognostic enrichment in trials. We aimed to compare machine learning algorithms and develop a simple tool for predicting 28-day mortality in ICU patients with coronavirus di...
Autores principales: | Churpek, Matthew M., Gupta, Shruti, Spicer, Alexandra B., Hayek, Salim S., Srivastava, Anand, Chan, Lili, Melamed, Michal L., Brenner, Samantha K., Radbel, Jared, Madhani-Lovely, Farah, Bhatraju, Pavan K., Bansal, Anip, Green, Adam, Goyal, Nitender, Shaefi, Shahzad, Parikh, Chirag R., Semler, Matthew W., Leaf, David E. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Lippincott Williams & Wilkins
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8378790/ https://www.ncbi.nlm.nih.gov/pubmed/34476402 http://dx.doi.org/10.1097/CCE.0000000000000515 |
Ejemplares similares
-
Hospital-Level Variation in Death for Critically Ill Patients with COVID-19
por: Churpek, Matthew M., et al.
Publicado: (2021) -
Tissue Plasminogen Activator in Critically Ill Adults with COVID-19
por: Douin, David J., et al.
Publicado: (2021) -
Extracorporeal membrane oxygenation in patients with severe respiratory failure from COVID-19
por: Shaefi, Shahzad, et al.
Publicado: (2021) -
Following the MAP for Improved Kidney Function in Hepatorenal Syndrome
por: Thau, Matthew R., et al.
Publicado: (2023) -
Midodrine — why don't you just work better?
por: Anstey, Matthew, et al.
Publicado: (2023)