Cargando…
Cardiac Magnetic Resonance Images Superresolution via Multichannel Residual Attention Networks
The deep neural network has achieved good results in medical image superresolution. However, due to the medical equipment limitations and the complexity of the human body structure, it is difficult to reconstruct clear cardiac magnetic resonance (CMR) superresolution images. To reconstruct clearer C...
Autores principales: | Qiu, Defu, Cheng, Yuhu, Wang, Xuesong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8378961/ https://www.ncbi.nlm.nih.gov/pubmed/34422096 http://dx.doi.org/10.1155/2021/8214304 |
Ejemplares similares
-
Progressive U-Net residual network for computed tomography images super-resolution in the screening of COVID-19
por: Qiu, Defu, et al.
Publicado: (2021) -
Multi-window back-projection residual networks for reconstructing COVID-19 CT super-resolution images
por: Qiu, Defu, et al.
Publicado: (2021) -
Sparse Dictionary-Based Magnetic Resonance Superresolution Imaging with Joint Loss Function Learning
por: Liu, Huanyu, et al.
Publicado: (2022) -
Image Superresolution Reconstruction via Granular Computing Clustering
por: Liu, Hongbing, et al.
Publicado: (2014) -
Influences of Magnetic Resonance Imaging Superresolution Algorithm-Based Transition Care on Prognosis of Children with Severe Viral Encephalitis
por: Wang, Yan, et al.
Publicado: (2022)