Cargando…
Modeling and forecasting the COVID-19 pandemic with heterogeneous autoregression approaches: South Korea
This paper deals with time series analysis for COVID-19 in South Korea. We adopt heterogeneous autoregressive (HAR) time series models and discuss the statistical inference for various COVID-19 data. Seven data sets such as cumulative confirmed (CC) case, cumulative recovered (CR) case and cumulativ...
Autores principales: | Hwang, Eunju, Yu, SeongMin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Author(s). Published by Elsevier B.V.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8378995/ https://www.ncbi.nlm.nih.gov/pubmed/34458082 http://dx.doi.org/10.1016/j.rinp.2021.104631 |
Ejemplares similares
-
Forecasting COVID-19: Vector Autoregression-Based Model
por: Rajab, Khairan, et al.
Publicado: (2022) -
Application of one-, three-, and seven-day forecasts during early onset on the COVID-19 epidemic dataset using moving average, autoregressive, autoregressive moving average, autoregressive integrated moving average, and naïve forecasting methods
por: Lynch, Christopher J., et al.
Publicado: (2021) -
GDP Forecasting: Machine Learning, Linear or Autoregression?
por: Maccarrone, Giovanni, et al.
Publicado: (2021) -
Methodology for forecasting electricity consumption by Grey and Vector autoregressive models
por: Guefano, Serge, et al.
Publicado: (2021) -
A fractionally integrated autoregressive moving average approach to forecasting tourism demand
por: Chu, Fong-Lin
Publicado: (2008)