Cargando…

Spectrum of Protein Location in Proteomes Captures Evolutionary Relationship Between Species

The native subcellular location (also referred to as localization or cellular compartment) of a protein is the one in which it acts most frequently; it is one aspect of protein function. Do ten eukaryotic model organisms differ in their location spectrum, i.e., the fraction of its proteome in each o...

Descripción completa

Detalles Bibliográficos
Autores principales: Marot-Lassauzaie, Valérie, Goldberg, Tatyana, Armenteros, Jose Juan Almagro, Nielsen, Henrik, Rost, Burkhard
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8379119/
https://www.ncbi.nlm.nih.gov/pubmed/34328525
http://dx.doi.org/10.1007/s00239-021-10022-4
Descripción
Sumario:The native subcellular location (also referred to as localization or cellular compartment) of a protein is the one in which it acts most frequently; it is one aspect of protein function. Do ten eukaryotic model organisms differ in their location spectrum, i.e., the fraction of its proteome in each of seven major cellular compartments? As experimental annotations of locations remain biased and incomplete, we need prediction methods to answer this question. After systematic bias corrections, the complete but faulty prediction methods appeared to be more appropriate to compare location spectra between species than the incomplete more accurate experimental data. This work compared the location spectra for ten eukaryotes: Homo sapiens (human), Gorilla gorilla (gorilla), Pan troglodytes (chimpanzee), Mus musculus (mouse), Rattus norvegicus (rat), Drosophila melanogaster (fruit/vinegar fly), Anopheles gambiae (African malaria mosquito), Caenorhabitis elegans (nematode), Saccharomyces cerevisiae (baker’s yeast), and Schizosaccharomyces pombe (fission yeast). The two largest classes were predicted to be the nucleus and the cytoplasm together accounting for 47–62% of all proteins, while 7–21% of the proteins were predicted in the plasma membrane and 4–15% to be secreted. Overall, the predicted location spectra were largely similar. However, in detail, the differences sufficed to plot trees (UPGMA) and 2D (PCA) maps relating the ten organisms using a simple Euclidean distance in seven states (location classes). The relations based on the simple predicted location spectra captured aspects of cross-species comparisons usually revealed only by much more detailed evolutionary comparisons. Most interestingly, known phylogenetic relations were reproduced better by paralog-only than by ortholog-only trees. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00239-021-10022-4.