Cargando…

MicroRNA expression profile in Lampetra morii upon Vibrio anguillarum infection and miR-4561 characterization targeting lip

As a critical evolutionary pivot between invertebrates and vertebrates, lampreys provide rich genetic information. Lamprey immune protein (LIP) is a key immune regulator. MicroRNAs, well-conserved in the response to immunological stress, remain understudied in lamprey immunity. We generated a lampre...

Descripción completa

Detalles Bibliográficos
Autores principales: Ma, Lie, Gou, Meng, Du, Zeyu, Zhu, Ting, Li, Jun, Li, Qing Wei, Pang, Yue
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8379177/
https://www.ncbi.nlm.nih.gov/pubmed/34417547
http://dx.doi.org/10.1038/s42003-021-02525-z
Descripción
Sumario:As a critical evolutionary pivot between invertebrates and vertebrates, lampreys provide rich genetic information. Lamprey immune protein (LIP) is a key immune regulator. MicroRNAs, well-conserved in the response to immunological stress, remain understudied in lamprey immunity. We generated a lamprey microRNA expression atlas, using deep sequencing, upon Vibrio anguillarum infection. Using comparative methods, we found that miR-4561 potentially regulates innate immunity via interaction with lip. We found a sequence in the 3′-UTR region of LIP mRNA complementary to the miR-4561 seed region; miR-4561 expression was negatively correlated with LIP. During V. anguillarum infection, miR-4561 inhibited LIP expression and bacterial clearance. Notably, LIP expression in supraneural body cells was necessary for the Gram-negative immune response. Additionally, we observed that overexpression of miR-4561 induced apoptosis in embryonic cells, suggesting a role in embryonic development. Collectively, we show lamprey microRNAs may significantly affect gene regulation and provide new insights on LIP-mediated immune regulation.