Cargando…

In Vivo Amygdala Nuclei Volumes in Schizophrenia and Bipolar Disorders

Abnormalities in amygdala volume are well-established in schizophrenia and commonly reported in bipolar disorders. However, the specificity of volumetric differences in individual amygdala nuclei is largely unknown. Patients with schizophrenia disorders (SCZ, N = 452, mean age 30.7 ± 9.2 [SD] years,...

Descripción completa

Detalles Bibliográficos
Autores principales: Barth, Claudia, Nerland, Stener, de Lange, Ann-Marie G, Wortinger, Laura A, Hilland, Eva, Andreassen, Ole A, Jørgensen, Kjetil N, Agartz, Ingrid
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8379533/
https://www.ncbi.nlm.nih.gov/pubmed/33479754
http://dx.doi.org/10.1093/schbul/sbaa192
Descripción
Sumario:Abnormalities in amygdala volume are well-established in schizophrenia and commonly reported in bipolar disorders. However, the specificity of volumetric differences in individual amygdala nuclei is largely unknown. Patients with schizophrenia disorders (SCZ, N = 452, mean age 30.7 ± 9.2 [SD] years, females 44.4%), bipolar disorders (BP, N = 316, 33.7 ± 11.4, 58.5%), and healthy controls (N = 753, 34.1 ± 9.1, 40.9%) underwent T1-weighted magnetic resonance imaging. Total amygdala, nuclei, and intracranial volume (ICV) were estimated with Freesurfer (v6.0.0). Analysis of covariance and multiple linear regression models, adjusting for age, age(2), ICV, and sex, were fitted to examine diagnostic group and subgroup differences in volume, respectively. Bilateral total amygdala and all nuclei volumes, except the medial and central nuclei, were significantly smaller in patients relative to controls. The largest effect sizes were found for the basal nucleus, accessory basal nucleus, and cortico-amygdaloid transition area (partial η(2) > 0.02). The diagnostic subgroup analysis showed that reductions in amygdala nuclei volume were most widespread in schizophrenia, with the lateral, cortical, paralaminar, and central nuclei being solely reduced in this disorder. The right accessory basal nucleus was marginally smaller in SCZ relative to BP (t = 2.32, P = .05). Our study is the first to demonstrate distinct patterns of amygdala nuclei volume reductions in a well-powered sample of patients with schizophrenia and bipolar disorders. Volume differences in the basolateral complex (lateral, basal, and accessory basal nuclei), an integral part of the threat processing circuitry, were most prominent in schizophrenia.