Cargando…
Phosphorylated WNK kinase networks in recoded bacteria recapitulate physiological function
Advances in genetic code expansion have enabled the production of proteins containing site-specific, authentic post-translational modifications. Here, we use a recoded bacterial strain with an expanded genetic code to encode phosphoserine into a human kinase protein. We directly encode phosphoserine...
Autores principales: | , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8379681/ https://www.ncbi.nlm.nih.gov/pubmed/34289367 http://dx.doi.org/10.1016/j.celrep.2021.109416 |
_version_ | 1783741057718026240 |
---|---|
author | Schiapparelli, Paula Pirman, Natasha L. Mohler, Kyle Miranda-Herrera, Pierre A. Zarco, Natanael Kilic, Onur Miller, Chad Shah, Sagar R. Rogulina, Svetlana Hungerford, William Abriola, Laura Hoyer, Denton Turk, Benjamin E. Guerrero-Cázares, Hugo Isaacs, Farren J. Quiñones-Hinojosa, Alfredo Levchenko, Andre Rinehart, Jesse |
author_facet | Schiapparelli, Paula Pirman, Natasha L. Mohler, Kyle Miranda-Herrera, Pierre A. Zarco, Natanael Kilic, Onur Miller, Chad Shah, Sagar R. Rogulina, Svetlana Hungerford, William Abriola, Laura Hoyer, Denton Turk, Benjamin E. Guerrero-Cázares, Hugo Isaacs, Farren J. Quiñones-Hinojosa, Alfredo Levchenko, Andre Rinehart, Jesse |
author_sort | Schiapparelli, Paula |
collection | PubMed |
description | Advances in genetic code expansion have enabled the production of proteins containing site-specific, authentic post-translational modifications. Here, we use a recoded bacterial strain with an expanded genetic code to encode phosphoserine into a human kinase protein. We directly encode phosphoserine into WNK1 (with-no-lysine [K] 1) or WNK4 kinases at multiple, distinct sites, which produced activated, phosphorylated WNK that phosphorylated and activated SPAK/OSR kinases, thereby synthetically activating this human kinase network in recoded bacteria. We used this approach to identify biochemical properties of WNK kinases, a motif for SPAK substrates, and small-molecule kinase inhibitors for phosphorylated SPAK. We show that the kinase inhibitors modulate SPAK substrates in cells, alter cell volume, and reduce migration of glioblastoma cells. Our work establishes a protein-engineering platform technology that demonstrates that synthetically active WNK kinase networks can accurately model cellular systems and can be used more broadly to target networks of phosphorylated proteins for research and discovery. |
format | Online Article Text |
id | pubmed-8379681 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
record_format | MEDLINE/PubMed |
spelling | pubmed-83796812021-08-21 Phosphorylated WNK kinase networks in recoded bacteria recapitulate physiological function Schiapparelli, Paula Pirman, Natasha L. Mohler, Kyle Miranda-Herrera, Pierre A. Zarco, Natanael Kilic, Onur Miller, Chad Shah, Sagar R. Rogulina, Svetlana Hungerford, William Abriola, Laura Hoyer, Denton Turk, Benjamin E. Guerrero-Cázares, Hugo Isaacs, Farren J. Quiñones-Hinojosa, Alfredo Levchenko, Andre Rinehart, Jesse Cell Rep Article Advances in genetic code expansion have enabled the production of proteins containing site-specific, authentic post-translational modifications. Here, we use a recoded bacterial strain with an expanded genetic code to encode phosphoserine into a human kinase protein. We directly encode phosphoserine into WNK1 (with-no-lysine [K] 1) or WNK4 kinases at multiple, distinct sites, which produced activated, phosphorylated WNK that phosphorylated and activated SPAK/OSR kinases, thereby synthetically activating this human kinase network in recoded bacteria. We used this approach to identify biochemical properties of WNK kinases, a motif for SPAK substrates, and small-molecule kinase inhibitors for phosphorylated SPAK. We show that the kinase inhibitors modulate SPAK substrates in cells, alter cell volume, and reduce migration of glioblastoma cells. Our work establishes a protein-engineering platform technology that demonstrates that synthetically active WNK kinase networks can accurately model cellular systems and can be used more broadly to target networks of phosphorylated proteins for research and discovery. 2021-07-20 /pmc/articles/PMC8379681/ /pubmed/34289367 http://dx.doi.org/10.1016/j.celrep.2021.109416 Text en https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/ (https://creativecommons.org/licenses/by-nc-nd/4.0/) ). |
spellingShingle | Article Schiapparelli, Paula Pirman, Natasha L. Mohler, Kyle Miranda-Herrera, Pierre A. Zarco, Natanael Kilic, Onur Miller, Chad Shah, Sagar R. Rogulina, Svetlana Hungerford, William Abriola, Laura Hoyer, Denton Turk, Benjamin E. Guerrero-Cázares, Hugo Isaacs, Farren J. Quiñones-Hinojosa, Alfredo Levchenko, Andre Rinehart, Jesse Phosphorylated WNK kinase networks in recoded bacteria recapitulate physiological function |
title | Phosphorylated WNK kinase networks in recoded bacteria recapitulate physiological function |
title_full | Phosphorylated WNK kinase networks in recoded bacteria recapitulate physiological function |
title_fullStr | Phosphorylated WNK kinase networks in recoded bacteria recapitulate physiological function |
title_full_unstemmed | Phosphorylated WNK kinase networks in recoded bacteria recapitulate physiological function |
title_short | Phosphorylated WNK kinase networks in recoded bacteria recapitulate physiological function |
title_sort | phosphorylated wnk kinase networks in recoded bacteria recapitulate physiological function |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8379681/ https://www.ncbi.nlm.nih.gov/pubmed/34289367 http://dx.doi.org/10.1016/j.celrep.2021.109416 |
work_keys_str_mv | AT schiapparellipaula phosphorylatedwnkkinasenetworksinrecodedbacteriarecapitulatephysiologicalfunction AT pirmannatashal phosphorylatedwnkkinasenetworksinrecodedbacteriarecapitulatephysiologicalfunction AT mohlerkyle phosphorylatedwnkkinasenetworksinrecodedbacteriarecapitulatephysiologicalfunction AT mirandaherrerapierrea phosphorylatedwnkkinasenetworksinrecodedbacteriarecapitulatephysiologicalfunction AT zarconatanael phosphorylatedwnkkinasenetworksinrecodedbacteriarecapitulatephysiologicalfunction AT kiliconur phosphorylatedwnkkinasenetworksinrecodedbacteriarecapitulatephysiologicalfunction AT millerchad phosphorylatedwnkkinasenetworksinrecodedbacteriarecapitulatephysiologicalfunction AT shahsagarr phosphorylatedwnkkinasenetworksinrecodedbacteriarecapitulatephysiologicalfunction AT rogulinasvetlana phosphorylatedwnkkinasenetworksinrecodedbacteriarecapitulatephysiologicalfunction AT hungerfordwilliam phosphorylatedwnkkinasenetworksinrecodedbacteriarecapitulatephysiologicalfunction AT abriolalaura phosphorylatedwnkkinasenetworksinrecodedbacteriarecapitulatephysiologicalfunction AT hoyerdenton phosphorylatedwnkkinasenetworksinrecodedbacteriarecapitulatephysiologicalfunction AT turkbenjamine phosphorylatedwnkkinasenetworksinrecodedbacteriarecapitulatephysiologicalfunction AT guerrerocazareshugo phosphorylatedwnkkinasenetworksinrecodedbacteriarecapitulatephysiologicalfunction AT isaacsfarrenj phosphorylatedwnkkinasenetworksinrecodedbacteriarecapitulatephysiologicalfunction AT quinoneshinojosaalfredo phosphorylatedwnkkinasenetworksinrecodedbacteriarecapitulatephysiologicalfunction AT levchenkoandre phosphorylatedwnkkinasenetworksinrecodedbacteriarecapitulatephysiologicalfunction AT rinehartjesse phosphorylatedwnkkinasenetworksinrecodedbacteriarecapitulatephysiologicalfunction |