Cargando…

Phosphorylated WNK kinase networks in recoded bacteria recapitulate physiological function

Advances in genetic code expansion have enabled the production of proteins containing site-specific, authentic post-translational modifications. Here, we use a recoded bacterial strain with an expanded genetic code to encode phosphoserine into a human kinase protein. We directly encode phosphoserine...

Descripción completa

Detalles Bibliográficos
Autores principales: Schiapparelli, Paula, Pirman, Natasha L., Mohler, Kyle, Miranda-Herrera, Pierre A., Zarco, Natanael, Kilic, Onur, Miller, Chad, Shah, Sagar R., Rogulina, Svetlana, Hungerford, William, Abriola, Laura, Hoyer, Denton, Turk, Benjamin E., Guerrero-Cázares, Hugo, Isaacs, Farren J., Quiñones-Hinojosa, Alfredo, Levchenko, Andre, Rinehart, Jesse
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8379681/
https://www.ncbi.nlm.nih.gov/pubmed/34289367
http://dx.doi.org/10.1016/j.celrep.2021.109416
_version_ 1783741057718026240
author Schiapparelli, Paula
Pirman, Natasha L.
Mohler, Kyle
Miranda-Herrera, Pierre A.
Zarco, Natanael
Kilic, Onur
Miller, Chad
Shah, Sagar R.
Rogulina, Svetlana
Hungerford, William
Abriola, Laura
Hoyer, Denton
Turk, Benjamin E.
Guerrero-Cázares, Hugo
Isaacs, Farren J.
Quiñones-Hinojosa, Alfredo
Levchenko, Andre
Rinehart, Jesse
author_facet Schiapparelli, Paula
Pirman, Natasha L.
Mohler, Kyle
Miranda-Herrera, Pierre A.
Zarco, Natanael
Kilic, Onur
Miller, Chad
Shah, Sagar R.
Rogulina, Svetlana
Hungerford, William
Abriola, Laura
Hoyer, Denton
Turk, Benjamin E.
Guerrero-Cázares, Hugo
Isaacs, Farren J.
Quiñones-Hinojosa, Alfredo
Levchenko, Andre
Rinehart, Jesse
author_sort Schiapparelli, Paula
collection PubMed
description Advances in genetic code expansion have enabled the production of proteins containing site-specific, authentic post-translational modifications. Here, we use a recoded bacterial strain with an expanded genetic code to encode phosphoserine into a human kinase protein. We directly encode phosphoserine into WNK1 (with-no-lysine [K] 1) or WNK4 kinases at multiple, distinct sites, which produced activated, phosphorylated WNK that phosphorylated and activated SPAK/OSR kinases, thereby synthetically activating this human kinase network in recoded bacteria. We used this approach to identify biochemical properties of WNK kinases, a motif for SPAK substrates, and small-molecule kinase inhibitors for phosphorylated SPAK. We show that the kinase inhibitors modulate SPAK substrates in cells, alter cell volume, and reduce migration of glioblastoma cells. Our work establishes a protein-engineering platform technology that demonstrates that synthetically active WNK kinase networks can accurately model cellular systems and can be used more broadly to target networks of phosphorylated proteins for research and discovery.
format Online
Article
Text
id pubmed-8379681
institution National Center for Biotechnology Information
language English
publishDate 2021
record_format MEDLINE/PubMed
spelling pubmed-83796812021-08-21 Phosphorylated WNK kinase networks in recoded bacteria recapitulate physiological function Schiapparelli, Paula Pirman, Natasha L. Mohler, Kyle Miranda-Herrera, Pierre A. Zarco, Natanael Kilic, Onur Miller, Chad Shah, Sagar R. Rogulina, Svetlana Hungerford, William Abriola, Laura Hoyer, Denton Turk, Benjamin E. Guerrero-Cázares, Hugo Isaacs, Farren J. Quiñones-Hinojosa, Alfredo Levchenko, Andre Rinehart, Jesse Cell Rep Article Advances in genetic code expansion have enabled the production of proteins containing site-specific, authentic post-translational modifications. Here, we use a recoded bacterial strain with an expanded genetic code to encode phosphoserine into a human kinase protein. We directly encode phosphoserine into WNK1 (with-no-lysine [K] 1) or WNK4 kinases at multiple, distinct sites, which produced activated, phosphorylated WNK that phosphorylated and activated SPAK/OSR kinases, thereby synthetically activating this human kinase network in recoded bacteria. We used this approach to identify biochemical properties of WNK kinases, a motif for SPAK substrates, and small-molecule kinase inhibitors for phosphorylated SPAK. We show that the kinase inhibitors modulate SPAK substrates in cells, alter cell volume, and reduce migration of glioblastoma cells. Our work establishes a protein-engineering platform technology that demonstrates that synthetically active WNK kinase networks can accurately model cellular systems and can be used more broadly to target networks of phosphorylated proteins for research and discovery. 2021-07-20 /pmc/articles/PMC8379681/ /pubmed/34289367 http://dx.doi.org/10.1016/j.celrep.2021.109416 Text en https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/ (https://creativecommons.org/licenses/by-nc-nd/4.0/) ).
spellingShingle Article
Schiapparelli, Paula
Pirman, Natasha L.
Mohler, Kyle
Miranda-Herrera, Pierre A.
Zarco, Natanael
Kilic, Onur
Miller, Chad
Shah, Sagar R.
Rogulina, Svetlana
Hungerford, William
Abriola, Laura
Hoyer, Denton
Turk, Benjamin E.
Guerrero-Cázares, Hugo
Isaacs, Farren J.
Quiñones-Hinojosa, Alfredo
Levchenko, Andre
Rinehart, Jesse
Phosphorylated WNK kinase networks in recoded bacteria recapitulate physiological function
title Phosphorylated WNK kinase networks in recoded bacteria recapitulate physiological function
title_full Phosphorylated WNK kinase networks in recoded bacteria recapitulate physiological function
title_fullStr Phosphorylated WNK kinase networks in recoded bacteria recapitulate physiological function
title_full_unstemmed Phosphorylated WNK kinase networks in recoded bacteria recapitulate physiological function
title_short Phosphorylated WNK kinase networks in recoded bacteria recapitulate physiological function
title_sort phosphorylated wnk kinase networks in recoded bacteria recapitulate physiological function
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8379681/
https://www.ncbi.nlm.nih.gov/pubmed/34289367
http://dx.doi.org/10.1016/j.celrep.2021.109416
work_keys_str_mv AT schiapparellipaula phosphorylatedwnkkinasenetworksinrecodedbacteriarecapitulatephysiologicalfunction
AT pirmannatashal phosphorylatedwnkkinasenetworksinrecodedbacteriarecapitulatephysiologicalfunction
AT mohlerkyle phosphorylatedwnkkinasenetworksinrecodedbacteriarecapitulatephysiologicalfunction
AT mirandaherrerapierrea phosphorylatedwnkkinasenetworksinrecodedbacteriarecapitulatephysiologicalfunction
AT zarconatanael phosphorylatedwnkkinasenetworksinrecodedbacteriarecapitulatephysiologicalfunction
AT kiliconur phosphorylatedwnkkinasenetworksinrecodedbacteriarecapitulatephysiologicalfunction
AT millerchad phosphorylatedwnkkinasenetworksinrecodedbacteriarecapitulatephysiologicalfunction
AT shahsagarr phosphorylatedwnkkinasenetworksinrecodedbacteriarecapitulatephysiologicalfunction
AT rogulinasvetlana phosphorylatedwnkkinasenetworksinrecodedbacteriarecapitulatephysiologicalfunction
AT hungerfordwilliam phosphorylatedwnkkinasenetworksinrecodedbacteriarecapitulatephysiologicalfunction
AT abriolalaura phosphorylatedwnkkinasenetworksinrecodedbacteriarecapitulatephysiologicalfunction
AT hoyerdenton phosphorylatedwnkkinasenetworksinrecodedbacteriarecapitulatephysiologicalfunction
AT turkbenjamine phosphorylatedwnkkinasenetworksinrecodedbacteriarecapitulatephysiologicalfunction
AT guerrerocazareshugo phosphorylatedwnkkinasenetworksinrecodedbacteriarecapitulatephysiologicalfunction
AT isaacsfarrenj phosphorylatedwnkkinasenetworksinrecodedbacteriarecapitulatephysiologicalfunction
AT quinoneshinojosaalfredo phosphorylatedwnkkinasenetworksinrecodedbacteriarecapitulatephysiologicalfunction
AT levchenkoandre phosphorylatedwnkkinasenetworksinrecodedbacteriarecapitulatephysiologicalfunction
AT rinehartjesse phosphorylatedwnkkinasenetworksinrecodedbacteriarecapitulatephysiologicalfunction