Cargando…
Novel Timosaponin AIII-Based Multifunctional Liposomal Delivery System for Synergistic Therapy Against Hepatocellular Carcinoma Cancer
INTRODUCTION: As high cholesterol level has been reported to be associated with cancer cell growth and cholesterol is vulnerable to oxidation, the conventional liposomes including cholesterol in the formulation seem to be challenged. Timosaponin AIII (TAIII), as a steroid saponin from Anemarrhena as...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8379713/ https://www.ncbi.nlm.nih.gov/pubmed/34429598 http://dx.doi.org/10.2147/IJN.S313759 |
_version_ | 1783741064539013120 |
---|---|
author | Zhang, Lijuan Zhang, Shengan Jiang, Min Lu, Lu Ding, Yue Ma, Ninghui Zhao, Yuan Xuchen, Sihan Zhang, Nailian |
author_facet | Zhang, Lijuan Zhang, Shengan Jiang, Min Lu, Lu Ding, Yue Ma, Ninghui Zhao, Yuan Xuchen, Sihan Zhang, Nailian |
author_sort | Zhang, Lijuan |
collection | PubMed |
description | INTRODUCTION: As high cholesterol level has been reported to be associated with cancer cell growth and cholesterol is vulnerable to oxidation, the conventional liposomes including cholesterol in the formulation seem to be challenged. Timosaponin AIII (TAIII), as a steroid saponin from Anemarrhena asphodeloides Bunge, possesses a similar structure with cholesterol and exhibits a wide range of antitumor activities, making it possible to develop a TAIII-based liposome where TAIII could potentially stabilize the phospholipid bilayer as a substitution of cholesterol and work as a chemotherapeutic drug as well. Meanwhile, TAIII could enhance the uptake of doxorubicin hydrochloride (DOX) in human hepatocellular carcinoma (HCC) cells and exhibit synergistic effect. Thus, we designed a novel thermally sensitive multifunctional liposomal system composed of TAIII and lipids to deliver DOX for enhanced HCC treatment. METHODS: The synergistic effects of DOX and TAIII were explored on HCC cells and the tumor inhibition rate of TAIII-based liposomes carrying DOX was evaluated on both subcutaneous and orthotopic transplantation tumor models. TAIII-based multifunctional liposomes were characterized. RESULTS: Synergistic HCC cytotoxicity was achieved at molar ratios of 1:1, 1:2 and 1:4 of DOX/TAIII. TAIII-based liposomes carrying a low DOX dose of 2 mg/kg exhibited significantly enhanced antitumor activity than 5 mg/kg of DOX without detected cardiotoxicity on both subcutaneous and orthotopic transplantation tumor models. TAIII-based liposomes were characterized with smaller size than cholesterol liposomes but exhibited favorable stability. Mild hyperthermia generated by laser irradiation accelerated the release of DOX and TAIII from liposomes at tumor site, and cell permeability of TAIII enhanced uptake of DOX in HCC cells. CONCLUSION: The innovative application of TAIII working as bilayer stabilizer and chemotherapeutic drug affords a stable multifunctional liposomal delivery system for synergistic therapy against HCC, which may be referred for the development of other types of saponins with similar property. |
format | Online Article Text |
id | pubmed-8379713 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Dove |
record_format | MEDLINE/PubMed |
spelling | pubmed-83797132021-08-23 Novel Timosaponin AIII-Based Multifunctional Liposomal Delivery System for Synergistic Therapy Against Hepatocellular Carcinoma Cancer Zhang, Lijuan Zhang, Shengan Jiang, Min Lu, Lu Ding, Yue Ma, Ninghui Zhao, Yuan Xuchen, Sihan Zhang, Nailian Int J Nanomedicine Original Research INTRODUCTION: As high cholesterol level has been reported to be associated with cancer cell growth and cholesterol is vulnerable to oxidation, the conventional liposomes including cholesterol in the formulation seem to be challenged. Timosaponin AIII (TAIII), as a steroid saponin from Anemarrhena asphodeloides Bunge, possesses a similar structure with cholesterol and exhibits a wide range of antitumor activities, making it possible to develop a TAIII-based liposome where TAIII could potentially stabilize the phospholipid bilayer as a substitution of cholesterol and work as a chemotherapeutic drug as well. Meanwhile, TAIII could enhance the uptake of doxorubicin hydrochloride (DOX) in human hepatocellular carcinoma (HCC) cells and exhibit synergistic effect. Thus, we designed a novel thermally sensitive multifunctional liposomal system composed of TAIII and lipids to deliver DOX for enhanced HCC treatment. METHODS: The synergistic effects of DOX and TAIII were explored on HCC cells and the tumor inhibition rate of TAIII-based liposomes carrying DOX was evaluated on both subcutaneous and orthotopic transplantation tumor models. TAIII-based multifunctional liposomes were characterized. RESULTS: Synergistic HCC cytotoxicity was achieved at molar ratios of 1:1, 1:2 and 1:4 of DOX/TAIII. TAIII-based liposomes carrying a low DOX dose of 2 mg/kg exhibited significantly enhanced antitumor activity than 5 mg/kg of DOX without detected cardiotoxicity on both subcutaneous and orthotopic transplantation tumor models. TAIII-based liposomes were characterized with smaller size than cholesterol liposomes but exhibited favorable stability. Mild hyperthermia generated by laser irradiation accelerated the release of DOX and TAIII from liposomes at tumor site, and cell permeability of TAIII enhanced uptake of DOX in HCC cells. CONCLUSION: The innovative application of TAIII working as bilayer stabilizer and chemotherapeutic drug affords a stable multifunctional liposomal delivery system for synergistic therapy against HCC, which may be referred for the development of other types of saponins with similar property. Dove 2021-08-16 /pmc/articles/PMC8379713/ /pubmed/34429598 http://dx.doi.org/10.2147/IJN.S313759 Text en © 2021 Zhang et al. https://creativecommons.org/licenses/by-nc/3.0/This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/ (https://creativecommons.org/licenses/by-nc/3.0/) ). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php). |
spellingShingle | Original Research Zhang, Lijuan Zhang, Shengan Jiang, Min Lu, Lu Ding, Yue Ma, Ninghui Zhao, Yuan Xuchen, Sihan Zhang, Nailian Novel Timosaponin AIII-Based Multifunctional Liposomal Delivery System for Synergistic Therapy Against Hepatocellular Carcinoma Cancer |
title | Novel Timosaponin AIII-Based Multifunctional Liposomal Delivery System for Synergistic Therapy Against Hepatocellular Carcinoma Cancer |
title_full | Novel Timosaponin AIII-Based Multifunctional Liposomal Delivery System for Synergistic Therapy Against Hepatocellular Carcinoma Cancer |
title_fullStr | Novel Timosaponin AIII-Based Multifunctional Liposomal Delivery System for Synergistic Therapy Against Hepatocellular Carcinoma Cancer |
title_full_unstemmed | Novel Timosaponin AIII-Based Multifunctional Liposomal Delivery System for Synergistic Therapy Against Hepatocellular Carcinoma Cancer |
title_short | Novel Timosaponin AIII-Based Multifunctional Liposomal Delivery System for Synergistic Therapy Against Hepatocellular Carcinoma Cancer |
title_sort | novel timosaponin aiii-based multifunctional liposomal delivery system for synergistic therapy against hepatocellular carcinoma cancer |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8379713/ https://www.ncbi.nlm.nih.gov/pubmed/34429598 http://dx.doi.org/10.2147/IJN.S313759 |
work_keys_str_mv | AT zhanglijuan noveltimosaponinaiiibasedmultifunctionalliposomaldeliverysystemforsynergistictherapyagainsthepatocellularcarcinomacancer AT zhangshengan noveltimosaponinaiiibasedmultifunctionalliposomaldeliverysystemforsynergistictherapyagainsthepatocellularcarcinomacancer AT jiangmin noveltimosaponinaiiibasedmultifunctionalliposomaldeliverysystemforsynergistictherapyagainsthepatocellularcarcinomacancer AT lulu noveltimosaponinaiiibasedmultifunctionalliposomaldeliverysystemforsynergistictherapyagainsthepatocellularcarcinomacancer AT dingyue noveltimosaponinaiiibasedmultifunctionalliposomaldeliverysystemforsynergistictherapyagainsthepatocellularcarcinomacancer AT maninghui noveltimosaponinaiiibasedmultifunctionalliposomaldeliverysystemforsynergistictherapyagainsthepatocellularcarcinomacancer AT zhaoyuan noveltimosaponinaiiibasedmultifunctionalliposomaldeliverysystemforsynergistictherapyagainsthepatocellularcarcinomacancer AT xuchensihan noveltimosaponinaiiibasedmultifunctionalliposomaldeliverysystemforsynergistictherapyagainsthepatocellularcarcinomacancer AT zhangnailian noveltimosaponinaiiibasedmultifunctionalliposomaldeliverysystemforsynergistictherapyagainsthepatocellularcarcinomacancer |