Cargando…
AttentionDDI: Siamese attention-based deep learning method for drug–drug interaction predictions
BACKGROUND: Drug–drug interactions (DDIs) refer to processes triggered by the administration of two or more drugs leading to side effects beyond those observed when drugs are administered by themselves. Due to the massive number of possible drug pairs, it is nearly impossible to experimentally test...
Autores principales: | Schwarz, Kyriakos, Allam, Ahmed, Perez Gonzalez, Nicolas Andres, Krauthammer, Michael |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8379737/ https://www.ncbi.nlm.nih.gov/pubmed/34418954 http://dx.doi.org/10.1186/s12859-021-04325-y |
Ejemplares similares
-
BioChemDDI: Predicting Drug–Drug Interactions by Fusing Biochemical and Structural Information through a Self-Attention Mechanism
por: Ren, Zhong-Hao, et al.
Publicado: (2022) -
Uniformity Attentive Learning-Based Siamese Network for Person Re-Identification
por: Jeong, Dasol, et al.
Publicado: (2020) -
CNN-Siam: multimodal siamese CNN-based deep learning approach for drug‒drug interaction prediction
por: Yang, Zihao, et al.
Publicado: (2023) -
DDI-PULearn: a positive-unlabeled learning method for large-scale prediction of drug-drug interactions
por: Zheng, Yi, et al.
Publicado: (2019) -
DDI-MuG: Multi-aspect graphs for drug-drug interaction extraction
por: Yang, Jie, et al.
Publicado: (2023)