Cargando…

Vectra 3D (dinotefuran, pyriproxyfen and permethrin) prevents acquisition of Borrelia burgdorferi sensu stricto by Ixodes ricinus and Ixodes scapularis ticks in an ex vivo feeding model

BACKGROUND: We evaluated the efficiency of an ex vivo feeding technique using a silicone membrane-based feeding chamber to (i) assess the anti-feeding and acaricidal efficacy of a spot-on combination of dinotefuran, pyriproxyfen and permethrin (DPP, Vectra® 3D) against adult Ixodes scapularis and Ix...

Descripción completa

Detalles Bibliográficos
Autores principales: Tahir, Djamel, Asri, Btissam, Meyer, Leon Nicolaas, Evans, Alec, Mather, Thomas, Blagburn, Byron, Straubinger, Reinhard K., Choumet, Valérie, Jongejan, Frans, Varloud, Marie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8379798/
https://www.ncbi.nlm.nih.gov/pubmed/34419129
http://dx.doi.org/10.1186/s13071-021-04881-5
Descripción
Sumario:BACKGROUND: We evaluated the efficiency of an ex vivo feeding technique using a silicone membrane-based feeding chamber to (i) assess the anti-feeding and acaricidal efficacy of a spot-on combination of dinotefuran, pyriproxyfen and permethrin (DPP, Vectra® 3D) against adult Ixodes scapularis and Ixodes ricinus ticks, and to (ii) explore its effect on blocking the acquisition of Borrelia burgdorferi sensu stricto. METHODS: Eight purpose-bred dogs were randomly allocated to two equal-size groups based on body weight assessed on day 2. DPP was administered topically, as spot-on, to four dogs on day 0. Hair from the eight dogs was collected individually by brushing the whole body on days 2, 7, 14, 21, 28 and 35. On each day of hair collection, 0.05 g of sampled hair was applied on the membrane corresponding to each feeding unit (FU). Seventy-two FU were each seeded with 30 adults of I. scapularis (n = 24 FU) or I. ricinus ticks (n = 48 FU). Bovine blood spiked with B. burgdorferi sensu stricto (strain B31) was added into each unit and changed every 12 h for 4 days. Tick mortality was assessed 1 h after seeding. One additional hour of incubation was added for live/moribund specimens and reassessed for viability. All remaining live/moribund ticks were left in the feeders and tick engorgement status was recorded at 96 h after seeding, and the uptake of B. burgdorferi s.s. was examined in the collected ticks by applying quantitative real-time PCR. RESULTS: Exposure to DPP-treated hair was 100% effective in blocking B. burgdorferi s.s. acquisition. The anti-feeding efficacy remained stable (100%) against both Ixodes species throughout the study. The acaricidal efficacy of DPP evaluated at 1 and 2 h after exposure was 100% throughout the study for I. ricinus, except the 1-h assessment on day 28 (95.9%) and day 35 (95.3%). The 1-h assessment of acaricidal efficacy was 100% at all time points for I. scapularis. CONCLUSIONS: The ex vivo feeding system developed here demonstrated a protective effect of DPP against the acquisition of B. burgdorferi without exposing the animals to the vectors or to the pathogen. GRAPHICAL ABSTRACT: [Image: see text]