Cargando…
Tracking droplets in soft granular flows with deep learning techniques
The state-of-the-art deep learning-based object recognition YOLO algorithm and object tracking DeepSORT algorithm are combined to analyze digital images from fluid dynamic simulations of multi-core emulsions and soft flowing crystals and to track moving droplets within these complex flows. The YOLO...
Autores principales: | Durve, Mihir, Bonaccorso, Fabio, Montessori, Andrea, Lauricella, Marco, Tiribocchi, Adriano, Succi, Sauro |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8380117/ https://www.ncbi.nlm.nih.gov/pubmed/34458055 http://dx.doi.org/10.1140/epjp/s13360-021-01849-3 |
Ejemplares similares
-
Benchmarking YOLOv5 and YOLOv7 models with DeepSORT for droplet tracking applications
por: Durve, Mihir, et al.
Publicado: (2023) -
Spontaneous motion of a passive fluid droplet in an active microchannel
por: Tiribocchi, Adriano, et al.
Publicado: (2023) -
The crucial role of adhesion in the transmigration of active droplets through interstitial orifices
por: Tiribocchi, A., et al.
Publicado: (2023) -
Translocation Dynamics of High-Internal Phase Double
Emulsions in Narrow Channels
por: Montessori, Andrea, et al.
Publicado: (2021) -
The vortex-driven dynamics of droplets within droplets
por: Tiribocchi, A., et al.
Publicado: (2021)