Cargando…
Convolutional Neural Network Intelligent Segmentation Algorithm-Based Magnetic Resonance Imaging in Diagnosis of Nasopharyngeal Carcinoma Foci
The aim of this study was to explore the adoption value of convolutional neural network- (CNN-) based magnetic resonance imaging (MRI) image intelligent segmentation model in the identification of nasopharyngeal carcinoma (NPC) lesions. The multisequence cross convolutional (MSCC) method was used in...
Autores principales: | Wang, Deli, Gong, Zheng, Zhang, Yanfen, Wang, Shouxi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8380181/ https://www.ncbi.nlm.nih.gov/pubmed/34456649 http://dx.doi.org/10.1155/2021/2033806 |
Ejemplares similares
-
Automated nasopharyngeal carcinoma segmentation in magnetic resonance images by combination of convolutional neural networks and graph cut
por: Ma, Zongqing, et al.
Publicado: (2018) -
Tumor Segmentation in Contrast-Enhanced Magnetic Resonance Imaging for Nasopharyngeal Carcinoma: Deep Learning with Convolutional Neural Network
por: Li, Qiaoliang, et al.
Publicado: (2018) -
An Intelligent Diagnosis Method of Brain MRI Tumor Segmentation Using Deep Convolutional Neural Network and SVM Algorithm
por: Wu, Wentao, et al.
Publicado: (2020) -
Segmentation Algorithm of Magnetic Resonance Imaging Glioma under Fully Convolutional Densely Connected Convolutional Networks
por: Dong, Jie, et al.
Publicado: (2022) -
Convolutional Neural Networks for Segmenting Cerebellar Fissures from Magnetic Resonance Imaging
por: Cabeza-Ruiz, Robin, et al.
Publicado: (2022)