Cargando…
Preselection of robust radiomic features does not improve outcome modelling in non-small cell lung cancer based on clinical routine FDG-PET imaging
BACKGROUND: Radiomics is a promising tool for identifying imaging-based biomarkers. Radiomics-based models are often trained on single-institution datasets; however, multi-centre imaging datasets are preferred for external generalizability owing to the influence of inter-institutional scanning diffe...
Autores principales: | Oliveira, Carol, Amstutz, Florian, Vuong, Diem, Bogowicz, Marta, Hüllner, Martin, Foerster, Robert, Basler, Lucas, Schröder, Christina, Eboulet, Eric I., Pless, Miklos, Thierstein, Sandra, Peters, Solange, Hillinger, Sven, Tanadini-Lang, Stephanie, Guckenberger, Matthias |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8380219/ https://www.ncbi.nlm.nih.gov/pubmed/34417899 http://dx.doi.org/10.1186/s13550-021-00809-3 |
Ejemplares similares
-
Radiomics Feature Activation Maps as a New Tool for Signature Interpretability
por: Vuong, Diem, et al.
Publicado: (2020) -
Robustness of radiomic features in magnetic resonance imaging for patients with glioblastoma: Multi-center study
por: Saltybaeva, Natalia, et al.
Publicado: (2022) -
Quantification of the spatial distribution of primary tumors in the lung to develop new prognostic biomarkers for locally advanced NSCLC
por: Vuong, Diem, et al.
Publicado: (2021) -
Corrigendum to “Robustness of radiomic features in magnetic resonance imaging for patients with glioblastoma: Multi-center study” [Phys. Imaging Radiat. Oncol. 22 (2022) 131–136]
por: Saltybaeva, Natalia, et al.
Publicado: (2022) -
FDG PET versus CT radiomics to predict outcome in malignant pleural mesothelioma patients
por: Pavic, M., et al.
Publicado: (2020)