Cargando…
Interobserver variability between experienced and inexperienced observers in the histopathological analysis of Wilms tumors: a pilot study for future algorithmic approach
BACKGROUND: Histopathological classification of Wilms tumors determines treatment regimen. Machine learning has been shown to contribute to histopathological classification in various malignancies but requires large numbers of manually annotated images and thus specific pathological knowledge. This...
Autores principales: | Rutgers, Jikke J., Bánki, Tessa, van der Kamp, Ananda, Waterlander, Tomas J., Scheijde-Vermeulen, Marijn A., van den Heuvel-Eibrink, Marry M., van der Laak, Jeroen A. W. M., Fiocco, Marta, Mavinkurve-Groothuis, Annelies M. C., de Krijger, Ronald R. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8380406/ https://www.ncbi.nlm.nih.gov/pubmed/34419100 http://dx.doi.org/10.1186/s13000-021-01136-w |
Ejemplares similares
-
Automated Deep Learning-Based Classification of Wilms Tumor Histopathology
por: van der Kamp, Ananda, et al.
Publicado: (2023) -
Somatic, Genetic and Epigenetic Changes in Nephrogenic Rests and Their Role in the Transformation to Wilms Tumors, a Systematic Review
por: Bánki, Tessa, et al.
Publicado: (2023) -
Prognostic Factors for Wilms Tumor Recurrence: A Review of the Literature
por: Groenendijk, Alissa, et al.
Publicado: (2021) -
TRIM28 variants and Wilms' tumour predisposition
por: Hol, Janna A, et al.
Publicado: (2021) -
Characteristics and Outcome of Children with Wilms Tumor Requiring Intensive Care Admission in First Line Therapy
por: Steur, Anouk, et al.
Publicado: (2022)