Cargando…
The accuracy and consistency of mastery for each content domain using the Rasch and deterministic inputs, noisy “and” gate diagnostic classification models: a simulation study and a real-world analysis using data from the Korean Medical Licensing Examination
PURPOSE: Diagnostic classification models (DCMs) were developed to identify the mastery or non-mastery of the attributes required for solving test items, but their application has been limited to very low-level attributes, and the accuracy and consistency of high-level attributes using DCMs have rar...
Autores principales: | Seo, Dong Gi, Kim, Jae Kum |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Korea Health Personnel Licensing Examination Institute
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8381025/ https://www.ncbi.nlm.nih.gov/pubmed/34225413 http://dx.doi.org/10.3352/jeehp.2021.18.15 |
Ejemplares similares
-
Estimation of item parameters and examinees’ mastery probability in each domain of the Korean Medical Licensing Examination using a deterministic inputs, noisy “and” gate (DINA) model
por: Choi, Younyoung, et al.
Publicado: (2020) -
Deterministic Input, Noisy Mixed Modeling for Identifying Coexisting Condensation Rules in Cognitive Diagnostic Assessments
por: Zhan, Peida
Publicado: (2023) -
Clustering noisy data with deterministic annealing
por: Ohlsson, M
Publicado: (1993) -
Probabilistic-Input, Noisy Conjunctive Models for Cognitive Diagnosis
por: Zhan, Peida, et al.
Publicado: (2018) -
Noisy gates approach for simulating quantum computers
por: Di Bartolomeo, Giovanni, et al.
Publicado: (2023)