Cargando…
DeepGRP: engineering a software tool for predicting genomic repetitive elements using Recurrent Neural Networks with attention
BACKGROUND: Repetitive elements contribute a large part of eukaryotic genomes. For example, about 40 to 50% of human, mouse and rat genomes are repetitive. So identifying and classifying repeats is an important step in genome annotation. This annotation step is traditionally performed using alignmen...
Autores principales: | Hausmann, Fabian, Kurtz, Stefan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8381506/ https://www.ncbi.nlm.nih.gov/pubmed/34425870 http://dx.doi.org/10.1186/s13015-021-00199-0 |
Ejemplares similares
-
RepBox: a toolbox for the identification of repetitive elements
por: Burkes-Patton, Shelvasha, et al.
Publicado: (2023) -
Repbase Update, a database of repetitive elements in eukaryotic genomes
por: Bao, Weidong, et al.
Publicado: (2015) -
Annotation, submission and screening of repetitive elements in Repbase: RepbaseSubmitter and Censor
por: Kohany, Oleksiy, et al.
Publicado: (2006) -
DeepGRN: prediction of transcription factor binding site across cell-types using attention-based deep neural networks
por: Chen, Chen, et al.
Publicado: (2021) -
LTRharvest, an efficient and flexible software for de novo detection of LTR retrotransposons
por: Ellinghaus, David, et al.
Publicado: (2008)