Cargando…
INFIMA leverages multi-omics model organism data to identify effector genes of human GWAS variants
Genome-wide association studies reveal many non-coding variants associated with complex traits. However, model organism studies largely remain as an untapped resource for unveiling the effector genes of non-coding variants. We develop INFIMA, Integrative Fine-Mapping, to pinpoint causal SNPs for div...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8381555/ https://www.ncbi.nlm.nih.gov/pubmed/34425882 http://dx.doi.org/10.1186/s13059-021-02450-8 |
_version_ | 1783741394022563840 |
---|---|
author | Dong, Chenyang Simonett, Shane P. Shin, Sunyoung Stapleton, Donnie S. Schueler, Kathryn L. Churchill, Gary A. Lu, Leina Liu, Xiaoxiao Jin, Fulai Li, Yan Attie, Alan D. Keller, Mark P. Keleş, Sündüz |
author_facet | Dong, Chenyang Simonett, Shane P. Shin, Sunyoung Stapleton, Donnie S. Schueler, Kathryn L. Churchill, Gary A. Lu, Leina Liu, Xiaoxiao Jin, Fulai Li, Yan Attie, Alan D. Keller, Mark P. Keleş, Sündüz |
author_sort | Dong, Chenyang |
collection | PubMed |
description | Genome-wide association studies reveal many non-coding variants associated with complex traits. However, model organism studies largely remain as an untapped resource for unveiling the effector genes of non-coding variants. We develop INFIMA, Integrative Fine-Mapping, to pinpoint causal SNPs for diversity outbred (DO) mice eQTL by integrating founder mice multi-omics data including ATAC-seq, RNA-seq, footprinting, and in silico mutation analysis. We demonstrate INFIMA’s superior performance compared to alternatives with human and mouse chromatin conformation capture datasets. We apply INFIMA to identify novel effector genes for GWAS variants associated with diabetes. The results of the application are available at http://www.statlab.wisc.edu/shiny/INFIMA/. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at (10.1186/s13059-021-02450-8). |
format | Online Article Text |
id | pubmed-8381555 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-83815552021-08-23 INFIMA leverages multi-omics model organism data to identify effector genes of human GWAS variants Dong, Chenyang Simonett, Shane P. Shin, Sunyoung Stapleton, Donnie S. Schueler, Kathryn L. Churchill, Gary A. Lu, Leina Liu, Xiaoxiao Jin, Fulai Li, Yan Attie, Alan D. Keller, Mark P. Keleş, Sündüz Genome Biol Method Genome-wide association studies reveal many non-coding variants associated with complex traits. However, model organism studies largely remain as an untapped resource for unveiling the effector genes of non-coding variants. We develop INFIMA, Integrative Fine-Mapping, to pinpoint causal SNPs for diversity outbred (DO) mice eQTL by integrating founder mice multi-omics data including ATAC-seq, RNA-seq, footprinting, and in silico mutation analysis. We demonstrate INFIMA’s superior performance compared to alternatives with human and mouse chromatin conformation capture datasets. We apply INFIMA to identify novel effector genes for GWAS variants associated with diabetes. The results of the application are available at http://www.statlab.wisc.edu/shiny/INFIMA/. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at (10.1186/s13059-021-02450-8). BioMed Central 2021-08-23 /pmc/articles/PMC8381555/ /pubmed/34425882 http://dx.doi.org/10.1186/s13059-021-02450-8 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) ) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
spellingShingle | Method Dong, Chenyang Simonett, Shane P. Shin, Sunyoung Stapleton, Donnie S. Schueler, Kathryn L. Churchill, Gary A. Lu, Leina Liu, Xiaoxiao Jin, Fulai Li, Yan Attie, Alan D. Keller, Mark P. Keleş, Sündüz INFIMA leverages multi-omics model organism data to identify effector genes of human GWAS variants |
title | INFIMA leverages multi-omics model organism data to identify effector genes of human GWAS variants |
title_full | INFIMA leverages multi-omics model organism data to identify effector genes of human GWAS variants |
title_fullStr | INFIMA leverages multi-omics model organism data to identify effector genes of human GWAS variants |
title_full_unstemmed | INFIMA leverages multi-omics model organism data to identify effector genes of human GWAS variants |
title_short | INFIMA leverages multi-omics model organism data to identify effector genes of human GWAS variants |
title_sort | infima leverages multi-omics model organism data to identify effector genes of human gwas variants |
topic | Method |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8381555/ https://www.ncbi.nlm.nih.gov/pubmed/34425882 http://dx.doi.org/10.1186/s13059-021-02450-8 |
work_keys_str_mv | AT dongchenyang infimaleveragesmultiomicsmodelorganismdatatoidentifyeffectorgenesofhumangwasvariants AT simonettshanep infimaleveragesmultiomicsmodelorganismdatatoidentifyeffectorgenesofhumangwasvariants AT shinsunyoung infimaleveragesmultiomicsmodelorganismdatatoidentifyeffectorgenesofhumangwasvariants AT stapletondonnies infimaleveragesmultiomicsmodelorganismdatatoidentifyeffectorgenesofhumangwasvariants AT schuelerkathrynl infimaleveragesmultiomicsmodelorganismdatatoidentifyeffectorgenesofhumangwasvariants AT churchillgarya infimaleveragesmultiomicsmodelorganismdatatoidentifyeffectorgenesofhumangwasvariants AT luleina infimaleveragesmultiomicsmodelorganismdatatoidentifyeffectorgenesofhumangwasvariants AT liuxiaoxiao infimaleveragesmultiomicsmodelorganismdatatoidentifyeffectorgenesofhumangwasvariants AT jinfulai infimaleveragesmultiomicsmodelorganismdatatoidentifyeffectorgenesofhumangwasvariants AT liyan infimaleveragesmultiomicsmodelorganismdatatoidentifyeffectorgenesofhumangwasvariants AT attiealand infimaleveragesmultiomicsmodelorganismdatatoidentifyeffectorgenesofhumangwasvariants AT kellermarkp infimaleveragesmultiomicsmodelorganismdatatoidentifyeffectorgenesofhumangwasvariants AT kelessunduz infimaleveragesmultiomicsmodelorganismdatatoidentifyeffectorgenesofhumangwasvariants |