Cargando…
Thai Fake News Detection Based on Information Retrieval, Natural Language Processing and Machine Learning
Fake news is a big problem in every society. Fake news must be detected and its sharing should be stopped before it causes further damage to the country. Spotting fake news is challenging because of its dynamics. In this research, we propose a framework for robust Thai fake news detection. The frame...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Singapore
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8382114/ https://www.ncbi.nlm.nih.gov/pubmed/34458858 http://dx.doi.org/10.1007/s42979-021-00775-6 |
_version_ | 1783741489787961344 |
---|---|
author | Meesad, Phayung |
author_facet | Meesad, Phayung |
author_sort | Meesad, Phayung |
collection | PubMed |
description | Fake news is a big problem in every society. Fake news must be detected and its sharing should be stopped before it causes further damage to the country. Spotting fake news is challenging because of its dynamics. In this research, we propose a framework for robust Thai fake news detection. The framework comprises three main modules, including information retrieval, natural language processing, and machine learning. This research has two phases: the data collection phase and the machine learning model building phase. In the data collection phase, we obtained data from Thai online news websites using web-crawler information retrieval, and we analyzed the data using natural language processing techniques to extract good features from web data. For comparison, we selected some well-known classification Machine Learning models, including Naïve Bayesian, Logistic Regression, K-Nearest Neighbor, Multilayer Perceptron, Support Vector Machine, Decision Tree, Random Forest, Rule-Based Classifier, and Long Short-Term Memory. The comparison study on the test set showed that Long Short-Term Memory was the best model, and we deployed an automatic online fake news detection web application. |
format | Online Article Text |
id | pubmed-8382114 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Springer Singapore |
record_format | MEDLINE/PubMed |
spelling | pubmed-83821142021-08-23 Thai Fake News Detection Based on Information Retrieval, Natural Language Processing and Machine Learning Meesad, Phayung SN Comput Sci Original Research Fake news is a big problem in every society. Fake news must be detected and its sharing should be stopped before it causes further damage to the country. Spotting fake news is challenging because of its dynamics. In this research, we propose a framework for robust Thai fake news detection. The framework comprises three main modules, including information retrieval, natural language processing, and machine learning. This research has two phases: the data collection phase and the machine learning model building phase. In the data collection phase, we obtained data from Thai online news websites using web-crawler information retrieval, and we analyzed the data using natural language processing techniques to extract good features from web data. For comparison, we selected some well-known classification Machine Learning models, including Naïve Bayesian, Logistic Regression, K-Nearest Neighbor, Multilayer Perceptron, Support Vector Machine, Decision Tree, Random Forest, Rule-Based Classifier, and Long Short-Term Memory. The comparison study on the test set showed that Long Short-Term Memory was the best model, and we deployed an automatic online fake news detection web application. Springer Singapore 2021-08-23 2021 /pmc/articles/PMC8382114/ /pubmed/34458858 http://dx.doi.org/10.1007/s42979-021-00775-6 Text en © The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2021 This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic. |
spellingShingle | Original Research Meesad, Phayung Thai Fake News Detection Based on Information Retrieval, Natural Language Processing and Machine Learning |
title | Thai Fake News Detection Based on Information Retrieval, Natural Language Processing and Machine Learning |
title_full | Thai Fake News Detection Based on Information Retrieval, Natural Language Processing and Machine Learning |
title_fullStr | Thai Fake News Detection Based on Information Retrieval, Natural Language Processing and Machine Learning |
title_full_unstemmed | Thai Fake News Detection Based on Information Retrieval, Natural Language Processing and Machine Learning |
title_short | Thai Fake News Detection Based on Information Retrieval, Natural Language Processing and Machine Learning |
title_sort | thai fake news detection based on information retrieval, natural language processing and machine learning |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8382114/ https://www.ncbi.nlm.nih.gov/pubmed/34458858 http://dx.doi.org/10.1007/s42979-021-00775-6 |
work_keys_str_mv | AT meesadphayung thaifakenewsdetectionbasedoninformationretrievalnaturallanguageprocessingandmachinelearning |