Cargando…
Detection of COVID-19 from chest x-ray images using transfer learning
Purpose: The objective of this study is to develop and evaluate a fully automated, deep learning-based method for detection of COVID-19 infection from chest x-ray images. Approach: The proposed model was developed by replacing the final classifier layer in DenseNet201 with a new network consisting o...
Autores principales: | Manokaran, Jenita, Zabihollahy, Fatemeh, Hamilton-Wright, Andrew, Ukwatta, Eranga |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Society of Photo-Optical Instrumentation Engineers
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8382139/ https://www.ncbi.nlm.nih.gov/pubmed/34435075 http://dx.doi.org/10.1117/1.JMI.8.S1.017503 |
Ejemplares similares
-
COVID-19 detection method based on SVRNet and SVDNet in lung x-rays
por: Rao, Kedong, et al.
Publicado: (2021) -
Video compression to support the expansion of whole-slide imaging into cytology
por: Zarella, Mark D., et al.
Publicado: (2019) -
Pilot study to evaluate tools to collect pathologist annotations for validating machine learning algorithms
por: Elfer, Katherine, et al.
Publicado: (2022) -
Automatic extraction of cell nuclei from H&E-stained histopathological images
por: Yi, Faliu, et al.
Publicado: (2017) -
3D CNN classification model for accurate diagnosis of coronavirus disease 2019 using computed tomography images
por: Li, Yifan, et al.
Publicado: (2021)