Cargando…
Diffusion enables integration of heterogeneous data and user-driven learning in a desktop knowledge-base
Integrating reference datasets (e.g. from high-throughput experiments) with unstructured and manually-assembled information (e.g. notes or comments from individual researchers) has the potential to tailor bioinformatic analyses to specific needs and to lead to new insights. However, developing bespo...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8382188/ https://www.ncbi.nlm.nih.gov/pubmed/34379637 http://dx.doi.org/10.1371/journal.pcbi.1009283 |
_version_ | 1783741503029379072 |
---|---|
author | Konopka, Tomasz Ng, Sandra Smedley, Damian |
author_facet | Konopka, Tomasz Ng, Sandra Smedley, Damian |
author_sort | Konopka, Tomasz |
collection | PubMed |
description | Integrating reference datasets (e.g. from high-throughput experiments) with unstructured and manually-assembled information (e.g. notes or comments from individual researchers) has the potential to tailor bioinformatic analyses to specific needs and to lead to new insights. However, developing bespoke analysis pipelines from scratch is time-consuming, and general tools for exploring such heterogeneous data are not available. We argue that by treating all data as text, a knowledge-base can accommodate a range of bioinformatic data types and applications. We show that a database coupled to nearest-neighbor algorithms can address common tasks such as gene-set analysis as well as specific tasks such as ontology translation. We further show that a mathematical transformation motivated by diffusion can be effective for exploration across heterogeneous datasets. Diffusion enables the knowledge-base to begin with a sparse query, impute more features, and find matches that would otherwise remain hidden. This can be used, for example, to map multi-modal queries consisting of gene symbols and phenotypes to descriptions of diseases. Diffusion also enables user-driven learning: when the knowledge-base cannot provide satisfactory search results in the first instance, users can improve the results in real-time by adding domain-specific knowledge. User-driven learning has implications for data management, integration, and curation. |
format | Online Article Text |
id | pubmed-8382188 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-83821882021-08-24 Diffusion enables integration of heterogeneous data and user-driven learning in a desktop knowledge-base Konopka, Tomasz Ng, Sandra Smedley, Damian PLoS Comput Biol Research Article Integrating reference datasets (e.g. from high-throughput experiments) with unstructured and manually-assembled information (e.g. notes or comments from individual researchers) has the potential to tailor bioinformatic analyses to specific needs and to lead to new insights. However, developing bespoke analysis pipelines from scratch is time-consuming, and general tools for exploring such heterogeneous data are not available. We argue that by treating all data as text, a knowledge-base can accommodate a range of bioinformatic data types and applications. We show that a database coupled to nearest-neighbor algorithms can address common tasks such as gene-set analysis as well as specific tasks such as ontology translation. We further show that a mathematical transformation motivated by diffusion can be effective for exploration across heterogeneous datasets. Diffusion enables the knowledge-base to begin with a sparse query, impute more features, and find matches that would otherwise remain hidden. This can be used, for example, to map multi-modal queries consisting of gene symbols and phenotypes to descriptions of diseases. Diffusion also enables user-driven learning: when the knowledge-base cannot provide satisfactory search results in the first instance, users can improve the results in real-time by adding domain-specific knowledge. User-driven learning has implications for data management, integration, and curation. Public Library of Science 2021-08-11 /pmc/articles/PMC8382188/ /pubmed/34379637 http://dx.doi.org/10.1371/journal.pcbi.1009283 Text en © 2021 Konopka et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Konopka, Tomasz Ng, Sandra Smedley, Damian Diffusion enables integration of heterogeneous data and user-driven learning in a desktop knowledge-base |
title | Diffusion enables integration of heterogeneous data and user-driven learning in a desktop knowledge-base |
title_full | Diffusion enables integration of heterogeneous data and user-driven learning in a desktop knowledge-base |
title_fullStr | Diffusion enables integration of heterogeneous data and user-driven learning in a desktop knowledge-base |
title_full_unstemmed | Diffusion enables integration of heterogeneous data and user-driven learning in a desktop knowledge-base |
title_short | Diffusion enables integration of heterogeneous data and user-driven learning in a desktop knowledge-base |
title_sort | diffusion enables integration of heterogeneous data and user-driven learning in a desktop knowledge-base |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8382188/ https://www.ncbi.nlm.nih.gov/pubmed/34379637 http://dx.doi.org/10.1371/journal.pcbi.1009283 |
work_keys_str_mv | AT konopkatomasz diffusionenablesintegrationofheterogeneousdataanduserdrivenlearninginadesktopknowledgebase AT ngsandra diffusionenablesintegrationofheterogeneousdataanduserdrivenlearninginadesktopknowledgebase AT smedleydamian diffusionenablesintegrationofheterogeneousdataanduserdrivenlearninginadesktopknowledgebase |