Cargando…
A modular approach for modeling the cell cycle based on functional response curves
Modeling biochemical reactions by means of differential equations often results in systems with a large number of variables and parameters. As this might complicate the interpretation and generalization of the obtained results, it is often desirable to reduce the complexity of the model. One way to...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8382204/ https://www.ncbi.nlm.nih.gov/pubmed/34379640 http://dx.doi.org/10.1371/journal.pcbi.1009008 |
_version_ | 1783741506788524032 |
---|---|
author | De Boeck, Jolan Rombouts, Jan Gelens, Lendert |
author_facet | De Boeck, Jolan Rombouts, Jan Gelens, Lendert |
author_sort | De Boeck, Jolan |
collection | PubMed |
description | Modeling biochemical reactions by means of differential equations often results in systems with a large number of variables and parameters. As this might complicate the interpretation and generalization of the obtained results, it is often desirable to reduce the complexity of the model. One way to accomplish this is by replacing the detailed reaction mechanisms of certain modules in the model by a mathematical expression that qualitatively describes the dynamical behavior of these modules. Such an approach has been widely adopted for ultrasensitive responses, for which underlying reaction mechanisms are often replaced by a single Hill function. Also time delays are usually accounted for by using an explicit delay in delay differential equations. In contrast, however, S-shaped response curves, which by definition have multiple output values for certain input values and are often encountered in bistable systems, are not easily modeled in such an explicit way. Here, we extend the classical Hill function into a mathematical expression that can be used to describe both ultrasensitive and S-shaped responses. We show how three ubiquitous modules (ultrasensitive responses, S-shaped responses and time delays) can be combined in different configurations and explore the dynamics of these systems. As an example, we apply our strategy to set up a model of the cell cycle consisting of multiple bistable switches, which can incorporate events such as DNA damage and coupling to the circadian clock in a phenomenological way. |
format | Online Article Text |
id | pubmed-8382204 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-83822042021-08-24 A modular approach for modeling the cell cycle based on functional response curves De Boeck, Jolan Rombouts, Jan Gelens, Lendert PLoS Comput Biol Research Article Modeling biochemical reactions by means of differential equations often results in systems with a large number of variables and parameters. As this might complicate the interpretation and generalization of the obtained results, it is often desirable to reduce the complexity of the model. One way to accomplish this is by replacing the detailed reaction mechanisms of certain modules in the model by a mathematical expression that qualitatively describes the dynamical behavior of these modules. Such an approach has been widely adopted for ultrasensitive responses, for which underlying reaction mechanisms are often replaced by a single Hill function. Also time delays are usually accounted for by using an explicit delay in delay differential equations. In contrast, however, S-shaped response curves, which by definition have multiple output values for certain input values and are often encountered in bistable systems, are not easily modeled in such an explicit way. Here, we extend the classical Hill function into a mathematical expression that can be used to describe both ultrasensitive and S-shaped responses. We show how three ubiquitous modules (ultrasensitive responses, S-shaped responses and time delays) can be combined in different configurations and explore the dynamics of these systems. As an example, we apply our strategy to set up a model of the cell cycle consisting of multiple bistable switches, which can incorporate events such as DNA damage and coupling to the circadian clock in a phenomenological way. Public Library of Science 2021-08-11 /pmc/articles/PMC8382204/ /pubmed/34379640 http://dx.doi.org/10.1371/journal.pcbi.1009008 Text en © 2021 De Boeck et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article De Boeck, Jolan Rombouts, Jan Gelens, Lendert A modular approach for modeling the cell cycle based on functional response curves |
title | A modular approach for modeling the cell cycle based on functional response curves |
title_full | A modular approach for modeling the cell cycle based on functional response curves |
title_fullStr | A modular approach for modeling the cell cycle based on functional response curves |
title_full_unstemmed | A modular approach for modeling the cell cycle based on functional response curves |
title_short | A modular approach for modeling the cell cycle based on functional response curves |
title_sort | modular approach for modeling the cell cycle based on functional response curves |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8382204/ https://www.ncbi.nlm.nih.gov/pubmed/34379640 http://dx.doi.org/10.1371/journal.pcbi.1009008 |
work_keys_str_mv | AT deboeckjolan amodularapproachformodelingthecellcyclebasedonfunctionalresponsecurves AT romboutsjan amodularapproachformodelingthecellcyclebasedonfunctionalresponsecurves AT gelenslendert amodularapproachformodelingthecellcyclebasedonfunctionalresponsecurves AT deboeckjolan modularapproachformodelingthecellcyclebasedonfunctionalresponsecurves AT romboutsjan modularapproachformodelingthecellcyclebasedonfunctionalresponsecurves AT gelenslendert modularapproachformodelingthecellcyclebasedonfunctionalresponsecurves |