Cargando…
EnHiC: learning fine-resolution Hi-C contact maps using a generative adversarial framework
MOTIVATION: The high-throughput chromosome conformation capture (Hi-C) technique has enabled genome-wide mapping of chromatin interactions. However, high-resolution Hi-C data requires costly, deep sequencing; therefore, it has only been achieved for a limited number of cell types. Machine learning m...
Autores principales: | Hu, Yangyang, Ma, Wenxiu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8382278/ https://www.ncbi.nlm.nih.gov/pubmed/34252966 http://dx.doi.org/10.1093/bioinformatics/btab272 |
Ejemplares similares
-
Weakly supervised learning of RNA modifications from low-resolution epitranscriptome data
por: Huang, Daiyun, et al.
Publicado: (2021) -
A Bayesian framework for inter-cellular information sharing improves dscRNA-seq quantification
por: Srivastava, Avi, et al.
Publicado: (2020) -
CProMG: controllable protein-oriented molecule generation with desired binding affinity and drug-like properties
por: Li, Jia-Ning, et al.
Publicado: (2023) -
Graph neural representational learning of RNA secondary structures for predicting RNA-protein interactions
por: Yan, Zichao, et al.
Publicado: (2020) -
Boosting the accuracy of protein secondary structure prediction through nearest neighbor search and method hybridization
por: Krieger, Spencer, et al.
Publicado: (2020)