Cargando…
A real-world demonstration of machine learning generalizability in the detection of intracranial hemorrhage on head computerized tomography
Machine learning (ML) holds great promise in transforming healthcare. While published studies have shown the utility of ML models in interpreting medical imaging examinations, these are often evaluated under laboratory settings. The importance of real world evaluation is best illustrated by case stu...
Autores principales: | Salehinejad, Hojjat, Kitamura, Jumpei, Ditkofsky, Noah, Lin, Amy, Bharatha, Aditya, Suthiphosuwan, Suradech, Lin, Hui-Ming, Wilson, Jefferson R., Mamdani, Muhammad, Colak, Errol |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8382750/ https://www.ncbi.nlm.nih.gov/pubmed/34426587 http://dx.doi.org/10.1038/s41598-021-95533-2 |
Ejemplares similares
-
Reversible Small Vessel Vasculitis and Encephalitis in HIV Antiretroviral Resistance
por: Muir, Ryan T, et al.
Publicado: (2020) -
Quantitative spinal cord MRI and sexual dysfunction in multiple sclerosis
por: Seyman, Estelle, et al.
Publicado: (2022) -
Cognitive impairment, the central vein sign, and paramagnetic rim lesions in RIS
por: Oh, Jiwon, et al.
Publicado: (2021) -
Learning generalizable behaviors from demonstration
por: Rivera, Corban, et al.
Publicado: (2022) -
Utility of mobile devices in the computerized tomography evaluation of intracranial hemorrhage
por: Panughpath, Sridhar G, et al.
Publicado: (2014)