Cargando…
The optical response of artificially twisted MoS[Formula: see text] bilayers
Two-dimensional layered materials offer the possibility to create artificial vertically stacked structures possessing an additional degree of freedom—the interlayer twist. We present a comprehensive optical study of artificially stacked bilayers (BLs) MoS[Formula: see text] encapsulated in hexagonal...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8382769/ https://www.ncbi.nlm.nih.gov/pubmed/34426607 http://dx.doi.org/10.1038/s41598-021-95700-5 |
_version_ | 1783741606015270912 |
---|---|
author | Grzeszczyk, M. Szpakowski, J. Slobodeniuk, A. O. Kazimierczuk, T. Bhatnagar, M. Taniguchi, T. Watanabe, K. Kossacki, P. Potemski, M. Babiński, A. Molas, M. R. |
author_facet | Grzeszczyk, M. Szpakowski, J. Slobodeniuk, A. O. Kazimierczuk, T. Bhatnagar, M. Taniguchi, T. Watanabe, K. Kossacki, P. Potemski, M. Babiński, A. Molas, M. R. |
author_sort | Grzeszczyk, M. |
collection | PubMed |
description | Two-dimensional layered materials offer the possibility to create artificial vertically stacked structures possessing an additional degree of freedom—the interlayer twist. We present a comprehensive optical study of artificially stacked bilayers (BLs) MoS[Formula: see text] encapsulated in hexagonal BN with interlayer twist angle ranging from 0[Formula: see text] to 60[Formula: see text] using Raman scattering and photoluminescence spectroscopies. It is found that the strength of the interlayer coupling in the studied BLs can be estimated using the energy dependence of indirect emission versus the A[Formula: see text] –E[Formula: see text] energy separation. Due to the hybridization of electronic states in the valence band, the emission line related to the interlayer exciton is apparent in both the natural (2H) and artificial (62[Formula: see text] ) MoS[Formula: see text] BLs, while it is absent in the structures with other twist angles. The interlayer coupling energy is estimated to be of about 50 meV. The effect of temperature on energies and intensities of the direct and indirect emission lines in MoS[Formula: see text] BLs is also quantified. |
format | Online Article Text |
id | pubmed-8382769 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-83827692021-09-01 The optical response of artificially twisted MoS[Formula: see text] bilayers Grzeszczyk, M. Szpakowski, J. Slobodeniuk, A. O. Kazimierczuk, T. Bhatnagar, M. Taniguchi, T. Watanabe, K. Kossacki, P. Potemski, M. Babiński, A. Molas, M. R. Sci Rep Article Two-dimensional layered materials offer the possibility to create artificial vertically stacked structures possessing an additional degree of freedom—the interlayer twist. We present a comprehensive optical study of artificially stacked bilayers (BLs) MoS[Formula: see text] encapsulated in hexagonal BN with interlayer twist angle ranging from 0[Formula: see text] to 60[Formula: see text] using Raman scattering and photoluminescence spectroscopies. It is found that the strength of the interlayer coupling in the studied BLs can be estimated using the energy dependence of indirect emission versus the A[Formula: see text] –E[Formula: see text] energy separation. Due to the hybridization of electronic states in the valence band, the emission line related to the interlayer exciton is apparent in both the natural (2H) and artificial (62[Formula: see text] ) MoS[Formula: see text] BLs, while it is absent in the structures with other twist angles. The interlayer coupling energy is estimated to be of about 50 meV. The effect of temperature on energies and intensities of the direct and indirect emission lines in MoS[Formula: see text] BLs is also quantified. Nature Publishing Group UK 2021-08-23 /pmc/articles/PMC8382769/ /pubmed/34426607 http://dx.doi.org/10.1038/s41598-021-95700-5 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Grzeszczyk, M. Szpakowski, J. Slobodeniuk, A. O. Kazimierczuk, T. Bhatnagar, M. Taniguchi, T. Watanabe, K. Kossacki, P. Potemski, M. Babiński, A. Molas, M. R. The optical response of artificially twisted MoS[Formula: see text] bilayers |
title | The optical response of artificially twisted MoS[Formula: see text] bilayers |
title_full | The optical response of artificially twisted MoS[Formula: see text] bilayers |
title_fullStr | The optical response of artificially twisted MoS[Formula: see text] bilayers |
title_full_unstemmed | The optical response of artificially twisted MoS[Formula: see text] bilayers |
title_short | The optical response of artificially twisted MoS[Formula: see text] bilayers |
title_sort | optical response of artificially twisted mos[formula: see text] bilayers |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8382769/ https://www.ncbi.nlm.nih.gov/pubmed/34426607 http://dx.doi.org/10.1038/s41598-021-95700-5 |
work_keys_str_mv | AT grzeszczykm theopticalresponseofartificiallytwistedmosformulaseetextbilayers AT szpakowskij theopticalresponseofartificiallytwistedmosformulaseetextbilayers AT slobodeniukao theopticalresponseofartificiallytwistedmosformulaseetextbilayers AT kazimierczukt theopticalresponseofartificiallytwistedmosformulaseetextbilayers AT bhatnagarm theopticalresponseofartificiallytwistedmosformulaseetextbilayers AT taniguchit theopticalresponseofartificiallytwistedmosformulaseetextbilayers AT watanabek theopticalresponseofartificiallytwistedmosformulaseetextbilayers AT kossackip theopticalresponseofartificiallytwistedmosformulaseetextbilayers AT potemskim theopticalresponseofartificiallytwistedmosformulaseetextbilayers AT babinskia theopticalresponseofartificiallytwistedmosformulaseetextbilayers AT molasmr theopticalresponseofartificiallytwistedmosformulaseetextbilayers AT grzeszczykm opticalresponseofartificiallytwistedmosformulaseetextbilayers AT szpakowskij opticalresponseofartificiallytwistedmosformulaseetextbilayers AT slobodeniukao opticalresponseofartificiallytwistedmosformulaseetextbilayers AT kazimierczukt opticalresponseofartificiallytwistedmosformulaseetextbilayers AT bhatnagarm opticalresponseofartificiallytwistedmosformulaseetextbilayers AT taniguchit opticalresponseofartificiallytwistedmosformulaseetextbilayers AT watanabek opticalresponseofartificiallytwistedmosformulaseetextbilayers AT kossackip opticalresponseofartificiallytwistedmosformulaseetextbilayers AT potemskim opticalresponseofartificiallytwistedmosformulaseetextbilayers AT babinskia opticalresponseofartificiallytwistedmosformulaseetextbilayers AT molasmr opticalresponseofartificiallytwistedmosformulaseetextbilayers |