Cargando…

The optical response of artificially twisted MoS[Formula: see text] bilayers

Two-dimensional layered materials offer the possibility to create artificial vertically stacked structures possessing an additional degree of freedom—the interlayer twist. We present a comprehensive optical study of artificially stacked bilayers (BLs) MoS[Formula: see text] encapsulated in hexagonal...

Descripción completa

Detalles Bibliográficos
Autores principales: Grzeszczyk, M., Szpakowski, J., Slobodeniuk, A. O., Kazimierczuk, T., Bhatnagar, M., Taniguchi, T., Watanabe, K., Kossacki, P., Potemski, M., Babiński, A., Molas, M. R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8382769/
https://www.ncbi.nlm.nih.gov/pubmed/34426607
http://dx.doi.org/10.1038/s41598-021-95700-5
_version_ 1783741606015270912
author Grzeszczyk, M.
Szpakowski, J.
Slobodeniuk, A. O.
Kazimierczuk, T.
Bhatnagar, M.
Taniguchi, T.
Watanabe, K.
Kossacki, P.
Potemski, M.
Babiński, A.
Molas, M. R.
author_facet Grzeszczyk, M.
Szpakowski, J.
Slobodeniuk, A. O.
Kazimierczuk, T.
Bhatnagar, M.
Taniguchi, T.
Watanabe, K.
Kossacki, P.
Potemski, M.
Babiński, A.
Molas, M. R.
author_sort Grzeszczyk, M.
collection PubMed
description Two-dimensional layered materials offer the possibility to create artificial vertically stacked structures possessing an additional degree of freedom—the interlayer twist. We present a comprehensive optical study of artificially stacked bilayers (BLs) MoS[Formula: see text] encapsulated in hexagonal BN with interlayer twist angle ranging from 0[Formula: see text] to 60[Formula: see text] using Raman scattering and photoluminescence spectroscopies. It is found that the strength of the interlayer coupling in the studied BLs can be estimated using the energy dependence of indirect emission versus the A[Formula: see text] –E[Formula: see text] energy separation. Due to the hybridization of electronic states in the valence band, the emission line related to the interlayer exciton is apparent in both the natural (2H) and artificial (62[Formula: see text] ) MoS[Formula: see text] BLs, while it is absent in the structures with other twist angles. The interlayer coupling energy is estimated to be of about 50 meV. The effect of temperature on energies and intensities of the direct and indirect emission lines in MoS[Formula: see text] BLs is also quantified.
format Online
Article
Text
id pubmed-8382769
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-83827692021-09-01 The optical response of artificially twisted MoS[Formula: see text] bilayers Grzeszczyk, M. Szpakowski, J. Slobodeniuk, A. O. Kazimierczuk, T. Bhatnagar, M. Taniguchi, T. Watanabe, K. Kossacki, P. Potemski, M. Babiński, A. Molas, M. R. Sci Rep Article Two-dimensional layered materials offer the possibility to create artificial vertically stacked structures possessing an additional degree of freedom—the interlayer twist. We present a comprehensive optical study of artificially stacked bilayers (BLs) MoS[Formula: see text] encapsulated in hexagonal BN with interlayer twist angle ranging from 0[Formula: see text] to 60[Formula: see text] using Raman scattering and photoluminescence spectroscopies. It is found that the strength of the interlayer coupling in the studied BLs can be estimated using the energy dependence of indirect emission versus the A[Formula: see text] –E[Formula: see text] energy separation. Due to the hybridization of electronic states in the valence band, the emission line related to the interlayer exciton is apparent in both the natural (2H) and artificial (62[Formula: see text] ) MoS[Formula: see text] BLs, while it is absent in the structures with other twist angles. The interlayer coupling energy is estimated to be of about 50 meV. The effect of temperature on energies and intensities of the direct and indirect emission lines in MoS[Formula: see text] BLs is also quantified. Nature Publishing Group UK 2021-08-23 /pmc/articles/PMC8382769/ /pubmed/34426607 http://dx.doi.org/10.1038/s41598-021-95700-5 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Grzeszczyk, M.
Szpakowski, J.
Slobodeniuk, A. O.
Kazimierczuk, T.
Bhatnagar, M.
Taniguchi, T.
Watanabe, K.
Kossacki, P.
Potemski, M.
Babiński, A.
Molas, M. R.
The optical response of artificially twisted MoS[Formula: see text] bilayers
title The optical response of artificially twisted MoS[Formula: see text] bilayers
title_full The optical response of artificially twisted MoS[Formula: see text] bilayers
title_fullStr The optical response of artificially twisted MoS[Formula: see text] bilayers
title_full_unstemmed The optical response of artificially twisted MoS[Formula: see text] bilayers
title_short The optical response of artificially twisted MoS[Formula: see text] bilayers
title_sort optical response of artificially twisted mos[formula: see text] bilayers
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8382769/
https://www.ncbi.nlm.nih.gov/pubmed/34426607
http://dx.doi.org/10.1038/s41598-021-95700-5
work_keys_str_mv AT grzeszczykm theopticalresponseofartificiallytwistedmosformulaseetextbilayers
AT szpakowskij theopticalresponseofartificiallytwistedmosformulaseetextbilayers
AT slobodeniukao theopticalresponseofartificiallytwistedmosformulaseetextbilayers
AT kazimierczukt theopticalresponseofartificiallytwistedmosformulaseetextbilayers
AT bhatnagarm theopticalresponseofartificiallytwistedmosformulaseetextbilayers
AT taniguchit theopticalresponseofartificiallytwistedmosformulaseetextbilayers
AT watanabek theopticalresponseofartificiallytwistedmosformulaseetextbilayers
AT kossackip theopticalresponseofartificiallytwistedmosformulaseetextbilayers
AT potemskim theopticalresponseofartificiallytwistedmosformulaseetextbilayers
AT babinskia theopticalresponseofartificiallytwistedmosformulaseetextbilayers
AT molasmr theopticalresponseofartificiallytwistedmosformulaseetextbilayers
AT grzeszczykm opticalresponseofartificiallytwistedmosformulaseetextbilayers
AT szpakowskij opticalresponseofartificiallytwistedmosformulaseetextbilayers
AT slobodeniukao opticalresponseofartificiallytwistedmosformulaseetextbilayers
AT kazimierczukt opticalresponseofartificiallytwistedmosformulaseetextbilayers
AT bhatnagarm opticalresponseofartificiallytwistedmosformulaseetextbilayers
AT taniguchit opticalresponseofartificiallytwistedmosformulaseetextbilayers
AT watanabek opticalresponseofartificiallytwistedmosformulaseetextbilayers
AT kossackip opticalresponseofartificiallytwistedmosformulaseetextbilayers
AT potemskim opticalresponseofartificiallytwistedmosformulaseetextbilayers
AT babinskia opticalresponseofartificiallytwistedmosformulaseetextbilayers
AT molasmr opticalresponseofartificiallytwistedmosformulaseetextbilayers