Cargando…
TS-m6A-DL: Tissue-specific identification of N6-methyladenosine sites using a universal deep learning model
The most communal post-transcriptional modification, N6-methyladenosine (m6A), is associated with a number of crucial biological processes. The precise detection of m6A sites around the genome is critical for revealing its regulatory function and providing new insights into drug design. Although bot...
Autores principales: | Abbas, Zeeshan, Tayara, Hilal, Zou, Quan, Chong, Kil To |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Research Network of Computational and Structural Biotechnology
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8383060/ https://www.ncbi.nlm.nih.gov/pubmed/34471503 http://dx.doi.org/10.1016/j.csbj.2021.08.014 |
Ejemplares similares
-
ENet-6mA: Identification of 6mA Modification Sites in Plant Genomes Using ElasticNet and Neural Networks
por: Abbas, Zeeshan, et al.
Publicado: (2022) -
Identifying DNA N4-methylcytosine sites in the rosaceae genome with a deep learning model relying on distributed feature representation()
por: Khanal, Jhabindra, et al.
Publicado: (2021) -
4mCPred-CNN—Prediction of DNA N4-Methylcytosine in the Mouse Genome Using a Convolutional Neural Network
por: Abbas, Zeeshan, et al.
Publicado: (2021) -
ORI-Explorer: a unified cell-specific tool for origin of replication sites prediction by feature fusion
por: Abbas, Zeeshan, et al.
Publicado: (2023) -
i4mC-Deep: An Intelligent Predictor of N4-Methylcytosine Sites Using a Deep Learning Approach with Chemical Properties
por: Alam, Waleed, et al.
Publicado: (2021)