Cargando…
deepMNN: Deep Learning-Based Single-Cell RNA Sequencing Data Batch Correction Using Mutual Nearest Neighbors
It is well recognized that batch effect in single-cell RNA sequencing (scRNA-seq) data remains a big challenge when integrating different datasets. Here, we proposed deepMNN, a novel deep learning-based method to correct batch effect in scRNA-seq data. We first searched mutual nearest neighbor (MNN)...
Autores principales: | Zou, Bin, Zhang, Tongda, Zhou, Ruilong, Jiang, Xiaosen, Yang, Huanming, Jin, Xin, Bai, Yong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8383340/ https://www.ncbi.nlm.nih.gov/pubmed/34447413 http://dx.doi.org/10.3389/fgene.2021.708981 |
Ejemplares similares
-
Nearest-Neighbor Projected Distance Regression for Epistasis Detection in GWAS With Population Structure Correction
por: Arabnejad, Marziyeh, et al.
Publicado: (2020) -
Deep Regression of Muon Energy with a K-Nearest Neighbor Algorithm
por: Dorigo, Tommaso, et al.
Publicado: (2022) -
Lectures on the nearest neighbor method
por: Biau, Gérard, et al.
Publicado: (2015) -
Adversarial training and deep k-nearest neighbors improves adversarial defense of glaucoma severity detection
por: Riza Rizky, Lalu M., et al.
Publicado: (2022) -
Dimensionality reduction with unsupervised nearest neighbors
por: Kramer, Oliver
Publicado: (2013)