Cargando…
Intelligent malware detection based on graph convolutional network
Malware has seriously threatened the safety of computer systems for a long time. Due to the rapid development of anti-detection technology, traditional detection methods based on static analysis and dynamic analysis have limited effects. With its better predictive performance, AI-based malware detec...
Autores principales: | Li, Shanxi, Zhou, Qingguo, Zhou, Rui, Lv, Qingquan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8383728/ https://www.ncbi.nlm.nih.gov/pubmed/34456504 http://dx.doi.org/10.1007/s11227-021-04020-y |
Ejemplares similares
-
Data augmentation based malware detection using convolutional neural networks
por: Catak, Ferhat Ozgur, et al.
Publicado: (2021) -
BejaGNN: behavior-based Java malware detection via graph neural network
por: Feng, Pengbin, et al.
Publicado: (2023) -
Malware detection framework based on graph variational autoencoder extracted embeddings from API-call graphs
por: Gunduz, Hakan
Publicado: (2022) -
Malware detection
por: Nandal, Priyanka
Publicado: (2017) -
Irregular Scene Text Detection Based on a Graph Convolutional Network
por: Zhang, Shiyu, et al.
Publicado: (2023)