Cargando…
β-elemene inhibits non-small cell lung cancer cell migration and invasion by inactivating the FAK-Src pathway
Despite sustained effort, the prognosis of lung cancer remains poor and the therapeutic responses are limited. Cell movement ability is a prerequisite for lung cancer metastasis, which involves focal adhesion kinase (FAK)-mediated cell migration and invasion via complex formation with Src. Hence, FA...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
D.A. Spandidos
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8383758/ https://www.ncbi.nlm.nih.gov/pubmed/34504549 http://dx.doi.org/10.3892/etm.2021.10529 |
Sumario: | Despite sustained effort, the prognosis of lung cancer remains poor and the therapeutic responses are limited. Cell movement ability is a prerequisite for lung cancer metastasis, which involves focal adhesion kinase (FAK)-mediated cell migration and invasion via complex formation with Src. Hence, FAK-Src signaling might be an effective target for anti-cancer treatment. β-elemene, the major component of elemene extracted from Curcuma Rhizoma, exhibits broad-spectrum anti-tumor properties. However, the role of β-elemene in lung cancer cell motility and its possible mechanism remain unknown. Herein, the role of β-elemene in the migration and invasion of two non-small cell lung cancer (NSCLC) cell lines was investigated by performing wound-healing and Transwell assays. The mRNA expression levels of genes associated with motility, including RhoA, Rac1, Cac42, matrix metalloprotease (MMP)2 and MMP9, were examined by reverse transcription-quantitative polymerase chain reaction. To determine whether β-elemene acts through FAK-Src signaling, western blotting was performed and the levels of phosphorylated FAK and Src were detected. The results indicated that β-elemene inhibited the migration and invasion of A549 and NCI-H1299 (H1299) cells, while the motility-associated genes were de-regulated following exposure to β-elemene. Furthermore, β-elemene decreased the activity of FAK and Src. Overall, these results suggest that β-elemene potentially inhibits NSCLC through FAK-Src signaling. |
---|