Cargando…

Effect of BDNF on airway inflammation in a rat model of COPD

Chronic obstructive pulmonary disease (COPD) is characterized by airflow limitation that is not fully reversible. The airflow limitation is usually progressive and associated with an abnormal inflammatory response of the lungs to noxious particles or gases. The present study aimed to investigate the...

Descripción completa

Detalles Bibliográficos
Autores principales: Guo, Zhengli, Liu, Lei, Li, Shasha, Xu, Bingqing, Xu, Yihui, Li, Huiping
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8383767/
https://www.ncbi.nlm.nih.gov/pubmed/34504570
http://dx.doi.org/10.3892/etm.2021.10550
Descripción
Sumario:Chronic obstructive pulmonary disease (COPD) is characterized by airflow limitation that is not fully reversible. The airflow limitation is usually progressive and associated with an abnormal inflammatory response of the lungs to noxious particles or gases. The present study aimed to investigate the effect of brain-derived neurotrophic factor (BDNF) on lung function and airway inflammation in a rat model of COPD. A rat model of COPD was established in this study, and anti-BDNF antibody was injected to observe the effect of BDNF on pulmonary function and airway inflammation. Lung function and hematoxylin and eosin staining analyses were performed. BDNF in the airway was examined using immunohistochemistry, western blotting and enzyme-linked immunosorbent assay. Levels of oxidant stress and inflammatory cytokines were measured. After long-term heavy cigarette exposure, pulmonary inflammation and emphysema were observed, while lung function had deteriorated in the COPD, COPD + anti-BDNF and COPD + normal saline groups. Levels of BDNF expression, malondialdehyde, tumor necrosis factor-α and interleukin-6 were increased in rats with COPD compared with control rats, while levels of superoxide dismutase and glutathione peroxidase were decreased. Anti-BDNF intervention improved airway inflammation. To conclude, anti-BDNF intervention could alleviate inflammation and improve any imbalance between oxidation and antioxidation in the airway.