Cargando…
A novel few-shot learning based multi-modality fusion model for COVID-19 rumor detection from online social media
BACKGROUND: Rumor detection is a popular research topic in natural language processing and data mining. Since the outbreak of COVID-19, related rumors have been widely posted and spread on online social media, which have seriously affected people’s daily lives, national economy, social stability, et...
Autores principales: | Lu, Heng-yang, Fan, Chenyou, Song, Xiaoning, Fang, Wei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8384041/ https://www.ncbi.nlm.nih.gov/pubmed/34497874 http://dx.doi.org/10.7717/peerj-cs.688 |
Ejemplares similares
-
Insights into few shot learning approaches for image scene classification
por: Soudy, Mohamed, et al.
Publicado: (2021) -
Aggregating pairwise semantic differences for few-shot claim verification
por: Zeng, Xia, et al.
Publicado: (2022) -
Bidirectional matching and aggregation network for few-shot relation extraction
por: Wei, Zhongcheng, et al.
Publicado: (2023) -
Few-shot short utterance speaker verification using meta-learning
por: Wang, Weijie, et al.
Publicado: (2023) -
Recognition of multi-modal fusion images with irregular interference
por: Wang, Yawei, et al.
Publicado: (2022)