Cargando…
Approximate spectral clustering using both reference vectors and topology of the network generated by growing neural gas
Spectral clustering (SC) is one of the most popular clustering methods and often outperforms traditional clustering methods. SC uses the eigenvectors of a Laplacian matrix calculated from a similarity matrix of a dataset. SC has serious drawbacks: the significant increases in the time complexity der...
Autor principal: | Fujita, Kazuhisa |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8384042/ https://www.ncbi.nlm.nih.gov/pubmed/34497872 http://dx.doi.org/10.7717/peerj-cs.679 |
Ejemplares similares
-
A new Kmeans clustering model and its generalization achieved by joint spectral embedding and rotation
por: Huang, Wenna, et al.
Publicado: (2021) -
ABCDE: Approximating Betweenness-Centrality ranking with progressive-DropEdge
por: Mirakyan, Martin
Publicado: (2021) -
Matching sensor ontologies through siamese neural networks without using reference alignment
por: Xue, Xingsi, et al.
Publicado: (2021) -
A convolutional neural networks based approach for clustering of emotional elements in art design
por: Rui, Xue
Publicado: (2023) -
A multi-scale convolutional neural network-based model for clustering economic risk detection
por: Zhao, Yi
Publicado: (2023)