Cargando…
The classification of skateboarding tricks via transfer learning pipelines
This study aims at classifying flat ground tricks, namely Ollie, Kickflip, Shove-it, Nollie and Frontside 180, through the identification of significant input image transformation on different transfer learning models with optimized Support Vector Machine (SVM) classifier. A total of six amateur ska...
Autores principales: | Abdullah, Muhammad Amirul, Ibrahim, Muhammad Ar Rahim, Shapiee, Muhammad Nur Aiman, Zakaria, Muhammad Aizzat, Mohd Razman, Mohd Azraai, Muazu Musa, Rabiu, Abu Osman, Noor Azuan, Abdul Majeed, Anwar P.P. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8384043/ https://www.ncbi.nlm.nih.gov/pubmed/34497873 http://dx.doi.org/10.7717/peerj-cs.680 |
Ejemplares similares
-
A real-time approach of diagnosing rice leaf disease using deep learning-based faster R-CNN framework
por: Bari, Bifta Sama, et al.
Publicado: (2021) -
The classification of EEG-based winking signals: a transfer learning and random forest pipeline
por: Mahendra Kumar, Jothi Letchumy, et al.
Publicado: (2021) -
The classification of motor imagery response: an accuracy enhancement through the ensemble of random subspace k-NN
por: Rashid, Mamunur, et al.
Publicado: (2021) -
Machine learning in aquaculture: hunger classification of lates calcarifer
por: Mohd Razman, Mohd Azraai, et al.
Publicado: (2020) -
Stochastic attentions and context learning for person re-identification
por: Perwaiz, Nazia, et al.
Publicado: (2021)