Cargando…
Splitting Gaussian processes for computationally-efficient regression
Gaussian processes offer a flexible kernel method for regression. While Gaussian processes have many useful theoretical properties and have proven practically useful, they suffer from poor scaling in the number of observations. In particular, the cubic time complexity of updating standard Gaussian p...
Autores principales: | Terry, Nick, Choe, Youngjun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8384217/ https://www.ncbi.nlm.nih.gov/pubmed/34428233 http://dx.doi.org/10.1371/journal.pone.0256470 |
Ejemplares similares
-
Regression with Gaussian Processes
por: Kalia, Saarik
Publicado: (2016) -
Efficient inference of synaptic plasticity rule with Gaussian process regression
por: Chen, Shirui, et al.
Publicado: (2023) -
Gaussian Process Regression for Materials and Molecules
por: Deringer, Volker L., et al.
Publicado: (2021) -
The pitfalls of using Gaussian Process Regression for normative modeling
por: Xu, Bohan, et al.
Publicado: (2021) -
Estimation of Clustering Parameters Using Gaussian Process Regression
por: Rigby, Paul, et al.
Publicado: (2014)