Cargando…
Highly efficient removal of Sb(V) from water by franklinite-containing nano-FeZn composites
The existence of toxic and carcinogenic pentavalent antimony in water is a great safety problem. In order to remove antimony(V) from water, the purpose of this study was to prepare a novel graphene nano iron zinc (rGO/NZV-FeZn) photocatalyst via hydrothermal method followed by ultrasonication. Herei...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8384885/ https://www.ncbi.nlm.nih.gov/pubmed/34429442 http://dx.doi.org/10.1038/s41598-021-95520-7 |
Sumario: | The existence of toxic and carcinogenic pentavalent antimony in water is a great safety problem. In order to remove antimony(V) from water, the purpose of this study was to prepare a novel graphene nano iron zinc (rGO/NZV-FeZn) photocatalyst via hydrothermal method followed by ultrasonication. Herein, weakly magnetic nano-Fe–Zn materials (NZV-FeZn, GAC(SP)/NZV-FeZn, and rGO/NZV-FeZn) capable of rapid and efficient Sb(V) adsorption from water were prepared and characterised. In particular, rGO/NZV-FeZn was shown to comprise franklinite, Fe(0), and graphite. Adsorption data were fitted by a quasi-second-order kinetic equation and Langmuir model, revealing that among these materials, NZV-FeZn exhibited the best Sb removal performance (543.9 mg(Sb) g(NZV-FeZn)(−1), R(2) = 0.951). In a practical decontamination test, Sb removal efficiency of 99.38% was obtained for a reaction column filled with 3.5 g of rGO/NZV-FeZn. Column regenerability was tested at an initial concentration of 0.8111 mg(Sb) L(−1), and the treated water obtained after five consecutive runs complied with the GB5749-2006 requirement for Sb. rGO/NZV-FeZn was suggested to remove Sb(V) through adsorption-photocatalytic reduction and flocculation sedimentation mechanisms and, in view of its high cost performance, stability, and upscalable synthesis, was concluded to hold great promise for source water and wastewater treatment. |
---|