Cargando…
Effects of intravenous furosemide on mucociliary transport and rheological properties of patients under mechanical ventilation
The use of intravenous (IV) furosemide is common practice in patients under mechanical ventilation (MV), but its effects on respiratory mucus are largely unknown. Furosemide can affect respiratory mucus either directly through inhibition of the NaK(Cl)(2) co-transporter on the basolateral surface of...
Autores principales: | , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2002
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC83851/ https://www.ncbi.nlm.nih.gov/pubmed/11940271 |
Sumario: | The use of intravenous (IV) furosemide is common practice in patients under mechanical ventilation (MV), but its effects on respiratory mucus are largely unknown. Furosemide can affect respiratory mucus either directly through inhibition of the NaK(Cl)(2) co-transporter on the basolateral surface of airway epithelium or indirectly through increased diuresis and dehydration. We investigated the physical properties and transportability of respiratory mucus obtained from 26 patients under MV distributed in two groups, furosemide (n = 12) and control (n = 14). Mucus collection was done at 0, 1, 2, 3 and 4 hours. The rheological properties of mucus were studied with a microrheometer, and in vitro mucociliary transport (MCT) (frog palate), contact angle (CA) and cough clearance (CC) (simulated cough machine) were measured. After the administration of furosemide, MCT decreased by 17 ± 19%, 24 ± 11%, 18 ± 16% and 18 ± 13% at 1, 2, 3 and 4 hours respectively, P < 0.001 compared with control. In contrast, no significant changes were observed in the control group. The remaining parameters did not change significantly in either group. Our results support the hypothesis that IV furosemide might acutely impair MCT in patients under MV. |
---|