Cargando…
Quantitative ubiquitylomics reveals the ubiquitination regulation landscape in oral adenoid cystic carcinoma
Adenoid cystic carcinoma (ACC) is an extremely rare salivary gland tumor with a poor prognosis and needs attention on molecular mechanisms. Protein ubiquitination is an evolutionarily conserved post-translational modification (PTM) for substrates degradation and controls diverse cellular functions....
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Portland Press Ltd.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8385350/ https://www.ncbi.nlm.nih.gov/pubmed/34350460 http://dx.doi.org/10.1042/BSR20211532 |
Sumario: | Adenoid cystic carcinoma (ACC) is an extremely rare salivary gland tumor with a poor prognosis and needs attention on molecular mechanisms. Protein ubiquitination is an evolutionarily conserved post-translational modification (PTM) for substrates degradation and controls diverse cellular functions. The broad cellular function of ubiquitination network holds great promise to detect potential targets and identify respective receptors. Novel technologies are discovered for in-depth research and characterization of the precise and dynamic regulation of ubiquitylomics in multiple cellular processes during cancer initiation, progression and treatment. In the present study, 4D label-free quantitative techniques of ubiquitination proteomics were used and we identified a total of 4152 ubiquitination sites in 1993 proteins. We also performed a systematic bioinformatics analysis for differential modified proteins and peptides containing quantitative information through the comparation between oral ACC (OACC) tumor with adjacent normal tissues, as well as the identification of eight protein clusters with motif analysis. Our findings offered an important reference of potential biomarkers and effective therapeutic targets for ACC. |
---|