Cargando…
Predicting host dependency factors of pathogens in Drosophila melanogaster using machine learning
Pathogens causing infections, and particularly when invading the host cells, require the host cell machinery for efficient regeneration and proliferation during infection. For their life cycle, host proteins are needed and these Host Dependency Factors (HDF) may serve as therapeutic targets. Several...
Autores principales: | Aromolaran, Olufemi, Beder, Thomas, Adedeji, Eunice, Ajamma, Yvonne, Oyelade, Jelili, Adebiyi, Ezekiel, Koenig, Rainer |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Research Network of Computational and Structural Biotechnology
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8385402/ https://www.ncbi.nlm.nih.gov/pubmed/34471501 http://dx.doi.org/10.1016/j.csbj.2021.08.010 |
Ejemplares similares
-
Essential gene prediction in Drosophila melanogaster using machine learning approaches based on sequence and functional features
por: Aromolaran, Olufemi, et al.
Publicado: (2020) -
Heuristic-enabled active machine learning: A case study of predicting essential developmental stage and immune response genes in Drosophila melanogaster
por: Aromolaran, Olufemi Tony, et al.
Publicado: (2023) -
Identifying essential genes across eukaryotes by machine learning
por: Beder, Thomas, et al.
Publicado: (2021) -
Anopheles metabolic proteins in malaria transmission, prevention and control: a review
por: Adedeji, Eunice Oluwatobiloba, et al.
Publicado: (2020) -
Clustering Algorithms: Their Application to Gene Expression Data
por: Oyelade, Jelili, et al.
Publicado: (2016)