Cargando…

Machine Learning and Artificial Intelligence for the Prediction of Host–Pathogen Interactions: A Viral Case

The research of interactions between the pathogens and their hosts is key for understanding the biology of infection. Commencing on the level of individual molecules, these interactions define the behavior of infectious agents and the outcomes they elicit. Discovery of host–pathogen interactions (HP...

Descripción completa

Detalles Bibliográficos
Autor principal: Yakimovich, Artur
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Dove 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8385421/
https://www.ncbi.nlm.nih.gov/pubmed/34456575
http://dx.doi.org/10.2147/IDR.S292743
Descripción
Sumario:The research of interactions between the pathogens and their hosts is key for understanding the biology of infection. Commencing on the level of individual molecules, these interactions define the behavior of infectious agents and the outcomes they elicit. Discovery of host–pathogen interactions (HPIs) conventionally involves a stepwise laborious research process. Yet, amid the global pandemic the urge for rapid discovery acceleration through the novel computational methodologies has become ever so poignant. This review explores the challenges of HPI discovery and investigates the efforts currently undertaken to apply the latest machine learning (ML) and artificial intelligence (AI) methodologies to this field. This includes applications to molecular and genetic data, as well as image and language data. Furthermore, a number of breakthroughs, obstacles, along with prospects of AI for host–pathogen interactions (HPI), are discussed.