Cargando…
Machine Learning Approaches in Study of Multiple Sclerosis Disease Through Magnetic Resonance Images
Multiple sclerosis (MS) is one of the most common autoimmune diseases which is commonly diagnosed and monitored using magnetic resonance imaging (MRI) with a combination of clinical manifestations. The purpose of this review is to highlight the main applications of Machine Learning (ML) models and t...
Autores principales: | Moazami, Faezeh, Lefevre-Utile, Alain, Papaloukas, Costas, Soumelis, Vassili |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8385534/ https://www.ncbi.nlm.nih.gov/pubmed/34456913 http://dx.doi.org/10.3389/fimmu.2021.700582 |
Ejemplares similares
-
A computational workflow for the detection of candidate diagnostic biomarkers of Kawasaki disease using time-series gene expression data
por: Pezoulas, Vasileios C., et al.
Publicado: (2021) -
Characterization and functional interrogation of the SARS-CoV-2 RNA interactome
por: Labeau, Athéna, et al.
Publicado: (2022) -
The role of machine learning in developing non-magnetic resonance imaging based biomarkers for multiple sclerosis: a systematic review
por: Hossain, Md Zakir, et al.
Publicado: (2022) -
Clinical application of transcranial magnetic stimulation in multiple sclerosis
por: Zhou, Xiaoliang, et al.
Publicado: (2022) -
White Matter Evaluation in Multiple Sclerosis Through Magnetic Resonance Kurtosis Imaging
por: Sahin, Sevim, et al.
Publicado: (2019)