Cargando…

PRPI-SC: an ensemble deep learning model for predicting plant lncRNA-protein interactions

BACKGROUND: Plant long non-coding RNAs (lncRNAs) play vital roles in many biological processes mainly through interactions with RNA-binding protein (RBP). To understand the function of lncRNAs, a fundamental method is to identify which types of proteins interact with the lncRNAs. However, the models...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhou, Haoran, Wekesa, Jael Sanyanda, Luan, Yushi, Meng, Jun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8385908/
https://www.ncbi.nlm.nih.gov/pubmed/34429059
http://dx.doi.org/10.1186/s12859-021-04328-9
Descripción
Sumario:BACKGROUND: Plant long non-coding RNAs (lncRNAs) play vital roles in many biological processes mainly through interactions with RNA-binding protein (RBP). To understand the function of lncRNAs, a fundamental method is to identify which types of proteins interact with the lncRNAs. However, the models or rules of interactions are a major challenge when calculating and estimating the types of RBP. RESULTS: In this study, we propose an ensemble deep learning model to predict plant lncRNA-protein interactions using stacked denoising autoencoder and convolutional neural network based on sequence and structural information, named PRPI-SC. PRPI-SC predicts interactions between lncRNAs and proteins based on the k-mer features of RNAs and proteins. Experiments proved good results on Arabidopsis thaliana and Zea mays datasets (ATH948 and ZEA22133). The accuracy rates of ATH948 and ZEA22133 datasets were 88.9% and 82.6%, respectively. PRPI-SC also performed well on some public RNA protein interaction datasets. CONCLUSIONS: PRPI-SC accurately predicts the interaction between plant lncRNA and protein, which plays a guiding role in studying the function and expression of plant lncRNA. At the same time, PRPI-SC has a strong generalization ability and good prediction effect for non-plant data.