Cargando…

Optogenetic Tools for Control of Public Goods in Saccharomyces cerevisiae

Microorganisms live in dense and diverse communities, with interactions between cells guiding community development and phenotype. The ability to perturb specific intercellular interactions in space and time provides a powerful route to determining the critical interactions and design rules for micr...

Descripción completa

Detalles Bibliográficos
Autores principales: Moreno Morales, Neydis, Patel, Michael T., Stewart, Cameron J., Sweeney, Kieran, McClean, Megan N.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Microbiology 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8386412/
https://www.ncbi.nlm.nih.gov/pubmed/34431694
http://dx.doi.org/10.1128/mSphere.00581-21
_version_ 1783742257050943488
author Moreno Morales, Neydis
Patel, Michael T.
Stewart, Cameron J.
Sweeney, Kieran
McClean, Megan N.
author_facet Moreno Morales, Neydis
Patel, Michael T.
Stewart, Cameron J.
Sweeney, Kieran
McClean, Megan N.
author_sort Moreno Morales, Neydis
collection PubMed
description Microorganisms live in dense and diverse communities, with interactions between cells guiding community development and phenotype. The ability to perturb specific intercellular interactions in space and time provides a powerful route to determining the critical interactions and design rules for microbial communities. Approaches using optogenetic tools to modulate these interactions offer promise, as light can be exquisitely controlled in space and time. We report new plasmids for rapid integration of an optogenetic system into Saccharomyces cerevisiae to engineer light control of expression of a gene of interest. In a proof-of-principle study, we demonstrate the ability to control a model cooperative interaction, namely, the expression of the enzyme invertase (SUC2) which allows S. cerevisiae to hydrolyze sucrose and utilize it as a carbon source. We demonstrate that the strength of this cooperative interaction can be tuned in space and time by modulating light intensity and through spatial control of illumination. Spatial control of light allows cooperators and cheaters to be spatially segregated, and we show that the interplay between cooperative and inhibitory interactions in space can lead to pattern formation. Our strategy can be applied to achieve spatiotemporal control of expression of a gene of interest in S. cerevisiae to perturb both intercellular and interspecies interactions. IMPORTANCE Recent advances in microbial ecology have highlighted the importance of intercellular interactions in controlling the development, composition, and resilience of microbial communities. In order to better understand the role of these interactions in governing community development, it is critical to be able to alter them in a controlled manner. Optogenetically controlled interactions offer advantages over static perturbations or chemically controlled interactions, as light can be manipulated in space and time and does not require the addition of nutrients or antibiotics. Here, we report a system for rapidly achieving light control of a gene of interest in the important model organism Saccharomyces cerevisiae and demonstrate that by controlling expression of the enzyme invertase, we can control cooperative interactions. This approach will be useful for understanding intercellular and interspecies interactions in natural and synthetic microbial consortia containing S. cerevisiae and serves as a proof of principle for implementing this approach in other consortia.
format Online
Article
Text
id pubmed-8386412
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher American Society for Microbiology
record_format MEDLINE/PubMed
spelling pubmed-83864122021-09-09 Optogenetic Tools for Control of Public Goods in Saccharomyces cerevisiae Moreno Morales, Neydis Patel, Michael T. Stewart, Cameron J. Sweeney, Kieran McClean, Megan N. mSphere Resource Report Microorganisms live in dense and diverse communities, with interactions between cells guiding community development and phenotype. The ability to perturb specific intercellular interactions in space and time provides a powerful route to determining the critical interactions and design rules for microbial communities. Approaches using optogenetic tools to modulate these interactions offer promise, as light can be exquisitely controlled in space and time. We report new plasmids for rapid integration of an optogenetic system into Saccharomyces cerevisiae to engineer light control of expression of a gene of interest. In a proof-of-principle study, we demonstrate the ability to control a model cooperative interaction, namely, the expression of the enzyme invertase (SUC2) which allows S. cerevisiae to hydrolyze sucrose and utilize it as a carbon source. We demonstrate that the strength of this cooperative interaction can be tuned in space and time by modulating light intensity and through spatial control of illumination. Spatial control of light allows cooperators and cheaters to be spatially segregated, and we show that the interplay between cooperative and inhibitory interactions in space can lead to pattern formation. Our strategy can be applied to achieve spatiotemporal control of expression of a gene of interest in S. cerevisiae to perturb both intercellular and interspecies interactions. IMPORTANCE Recent advances in microbial ecology have highlighted the importance of intercellular interactions in controlling the development, composition, and resilience of microbial communities. In order to better understand the role of these interactions in governing community development, it is critical to be able to alter them in a controlled manner. Optogenetically controlled interactions offer advantages over static perturbations or chemically controlled interactions, as light can be manipulated in space and time and does not require the addition of nutrients or antibiotics. Here, we report a system for rapidly achieving light control of a gene of interest in the important model organism Saccharomyces cerevisiae and demonstrate that by controlling expression of the enzyme invertase, we can control cooperative interactions. This approach will be useful for understanding intercellular and interspecies interactions in natural and synthetic microbial consortia containing S. cerevisiae and serves as a proof of principle for implementing this approach in other consortia. American Society for Microbiology 2021-08-25 /pmc/articles/PMC8386412/ /pubmed/34431694 http://dx.doi.org/10.1128/mSphere.00581-21 Text en Copyright © 2021 Moreno Morales et al. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Resource Report
Moreno Morales, Neydis
Patel, Michael T.
Stewart, Cameron J.
Sweeney, Kieran
McClean, Megan N.
Optogenetic Tools for Control of Public Goods in Saccharomyces cerevisiae
title Optogenetic Tools for Control of Public Goods in Saccharomyces cerevisiae
title_full Optogenetic Tools for Control of Public Goods in Saccharomyces cerevisiae
title_fullStr Optogenetic Tools for Control of Public Goods in Saccharomyces cerevisiae
title_full_unstemmed Optogenetic Tools for Control of Public Goods in Saccharomyces cerevisiae
title_short Optogenetic Tools for Control of Public Goods in Saccharomyces cerevisiae
title_sort optogenetic tools for control of public goods in saccharomyces cerevisiae
topic Resource Report
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8386412/
https://www.ncbi.nlm.nih.gov/pubmed/34431694
http://dx.doi.org/10.1128/mSphere.00581-21
work_keys_str_mv AT morenomoralesneydis optogenetictoolsforcontrolofpublicgoodsinsaccharomycescerevisiae
AT patelmichaelt optogenetictoolsforcontrolofpublicgoodsinsaccharomycescerevisiae
AT stewartcameronj optogenetictoolsforcontrolofpublicgoodsinsaccharomycescerevisiae
AT sweeneykieran optogenetictoolsforcontrolofpublicgoodsinsaccharomycescerevisiae
AT mccleanmegann optogenetictoolsforcontrolofpublicgoodsinsaccharomycescerevisiae