Cargando…

A wafer-scale fabrication method for three-dimensional plasmonic hollow nanopillars

Access to nanofabrication strategies for crafting three-dimensional plasmonic structures is limited. In this work, a fabrication strategy to produce 3D plasmonic hollow nanopillars (HNPs) using Talbot lithography and I-line photolithography is introduced. This method is named subtractive hybrid lith...

Descripción completa

Detalles Bibliográficos
Autores principales: Jonker, D., Jafari, Z., Winczewski, J. P., Eyovge, C., Berenschot, J. W., Tas, N. R., Gardeniers, J. G. E., De Leon, I., Susarrey-Arce, A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: RSC 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8386417/
https://www.ncbi.nlm.nih.gov/pubmed/34485816
http://dx.doi.org/10.1039/d1na00316j
_version_ 1783742258242125824
author Jonker, D.
Jafari, Z.
Winczewski, J. P.
Eyovge, C.
Berenschot, J. W.
Tas, N. R.
Gardeniers, J. G. E.
De Leon, I.
Susarrey-Arce, A.
author_facet Jonker, D.
Jafari, Z.
Winczewski, J. P.
Eyovge, C.
Berenschot, J. W.
Tas, N. R.
Gardeniers, J. G. E.
De Leon, I.
Susarrey-Arce, A.
author_sort Jonker, D.
collection PubMed
description Access to nanofabrication strategies for crafting three-dimensional plasmonic structures is limited. In this work, a fabrication strategy to produce 3D plasmonic hollow nanopillars (HNPs) using Talbot lithography and I-line photolithography is introduced. This method is named subtractive hybrid lithography (SHL), and permits intermixed usage of nano-and-macroscale patterns. Sputter-redeposition of gold (Au) on the SHL resist pattern yields large areas of dense periodic Au-HNPs. These Au-HNPs are arranged in a square unit cell with a 250 nm pitch. The carefully controlled fabrication process resulted in Au-HNPs with nanoscale dimensions over the Au-HNP dimensions such as an 80 ± 2 nm thick solid base with a 133 ± 4 nm diameter, and a 170 ± 10 nm high nano-rim with a 14 ± 3 nm sidewall rim-thickness. The plasmonic optical response is assessed with FDTD-modeling and reveals that the highest field enhancement is at the top of the hollow nanopillar rim. The modeled field enhancement factor (EF) is compared to the experimental analytical field enhancement factor, which shows to pair up with ca. 10(3) < EF < 10(4) and ca. 10(3) < EF < 10(5) for excitation wavelengths of 633 and 785 nm. From a broader perspective, our results can stimulate the use of Au-HNPs in the fields of plasmonic sensors and spectroscopy.
format Online
Article
Text
id pubmed-8386417
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher RSC
record_format MEDLINE/PubMed
spelling pubmed-83864172021-09-01 A wafer-scale fabrication method for three-dimensional plasmonic hollow nanopillars Jonker, D. Jafari, Z. Winczewski, J. P. Eyovge, C. Berenschot, J. W. Tas, N. R. Gardeniers, J. G. E. De Leon, I. Susarrey-Arce, A. Nanoscale Adv Chemistry Access to nanofabrication strategies for crafting three-dimensional plasmonic structures is limited. In this work, a fabrication strategy to produce 3D plasmonic hollow nanopillars (HNPs) using Talbot lithography and I-line photolithography is introduced. This method is named subtractive hybrid lithography (SHL), and permits intermixed usage of nano-and-macroscale patterns. Sputter-redeposition of gold (Au) on the SHL resist pattern yields large areas of dense periodic Au-HNPs. These Au-HNPs are arranged in a square unit cell with a 250 nm pitch. The carefully controlled fabrication process resulted in Au-HNPs with nanoscale dimensions over the Au-HNP dimensions such as an 80 ± 2 nm thick solid base with a 133 ± 4 nm diameter, and a 170 ± 10 nm high nano-rim with a 14 ± 3 nm sidewall rim-thickness. The plasmonic optical response is assessed with FDTD-modeling and reveals that the highest field enhancement is at the top of the hollow nanopillar rim. The modeled field enhancement factor (EF) is compared to the experimental analytical field enhancement factor, which shows to pair up with ca. 10(3) < EF < 10(4) and ca. 10(3) < EF < 10(5) for excitation wavelengths of 633 and 785 nm. From a broader perspective, our results can stimulate the use of Au-HNPs in the fields of plasmonic sensors and spectroscopy. RSC 2021-07-07 /pmc/articles/PMC8386417/ /pubmed/34485816 http://dx.doi.org/10.1039/d1na00316j Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/
spellingShingle Chemistry
Jonker, D.
Jafari, Z.
Winczewski, J. P.
Eyovge, C.
Berenschot, J. W.
Tas, N. R.
Gardeniers, J. G. E.
De Leon, I.
Susarrey-Arce, A.
A wafer-scale fabrication method for three-dimensional plasmonic hollow nanopillars
title A wafer-scale fabrication method for three-dimensional plasmonic hollow nanopillars
title_full A wafer-scale fabrication method for three-dimensional plasmonic hollow nanopillars
title_fullStr A wafer-scale fabrication method for three-dimensional plasmonic hollow nanopillars
title_full_unstemmed A wafer-scale fabrication method for three-dimensional plasmonic hollow nanopillars
title_short A wafer-scale fabrication method for three-dimensional plasmonic hollow nanopillars
title_sort wafer-scale fabrication method for three-dimensional plasmonic hollow nanopillars
topic Chemistry
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8386417/
https://www.ncbi.nlm.nih.gov/pubmed/34485816
http://dx.doi.org/10.1039/d1na00316j
work_keys_str_mv AT jonkerd awaferscalefabricationmethodforthreedimensionalplasmonichollownanopillars
AT jafariz awaferscalefabricationmethodforthreedimensionalplasmonichollownanopillars
AT winczewskijp awaferscalefabricationmethodforthreedimensionalplasmonichollownanopillars
AT eyovgec awaferscalefabricationmethodforthreedimensionalplasmonichollownanopillars
AT berenschotjw awaferscalefabricationmethodforthreedimensionalplasmonichollownanopillars
AT tasnr awaferscalefabricationmethodforthreedimensionalplasmonichollownanopillars
AT gardeniersjge awaferscalefabricationmethodforthreedimensionalplasmonichollownanopillars
AT deleoni awaferscalefabricationmethodforthreedimensionalplasmonichollownanopillars
AT susarreyarcea awaferscalefabricationmethodforthreedimensionalplasmonichollownanopillars
AT jonkerd waferscalefabricationmethodforthreedimensionalplasmonichollownanopillars
AT jafariz waferscalefabricationmethodforthreedimensionalplasmonichollownanopillars
AT winczewskijp waferscalefabricationmethodforthreedimensionalplasmonichollownanopillars
AT eyovgec waferscalefabricationmethodforthreedimensionalplasmonichollownanopillars
AT berenschotjw waferscalefabricationmethodforthreedimensionalplasmonichollownanopillars
AT tasnr waferscalefabricationmethodforthreedimensionalplasmonichollownanopillars
AT gardeniersjge waferscalefabricationmethodforthreedimensionalplasmonichollownanopillars
AT deleoni waferscalefabricationmethodforthreedimensionalplasmonichollownanopillars
AT susarreyarcea waferscalefabricationmethodforthreedimensionalplasmonichollownanopillars