Cargando…
A wafer-scale fabrication method for three-dimensional plasmonic hollow nanopillars
Access to nanofabrication strategies for crafting three-dimensional plasmonic structures is limited. In this work, a fabrication strategy to produce 3D plasmonic hollow nanopillars (HNPs) using Talbot lithography and I-line photolithography is introduced. This method is named subtractive hybrid lith...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
RSC
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8386417/ https://www.ncbi.nlm.nih.gov/pubmed/34485816 http://dx.doi.org/10.1039/d1na00316j |
_version_ | 1783742258242125824 |
---|---|
author | Jonker, D. Jafari, Z. Winczewski, J. P. Eyovge, C. Berenschot, J. W. Tas, N. R. Gardeniers, J. G. E. De Leon, I. Susarrey-Arce, A. |
author_facet | Jonker, D. Jafari, Z. Winczewski, J. P. Eyovge, C. Berenschot, J. W. Tas, N. R. Gardeniers, J. G. E. De Leon, I. Susarrey-Arce, A. |
author_sort | Jonker, D. |
collection | PubMed |
description | Access to nanofabrication strategies for crafting three-dimensional plasmonic structures is limited. In this work, a fabrication strategy to produce 3D plasmonic hollow nanopillars (HNPs) using Talbot lithography and I-line photolithography is introduced. This method is named subtractive hybrid lithography (SHL), and permits intermixed usage of nano-and-macroscale patterns. Sputter-redeposition of gold (Au) on the SHL resist pattern yields large areas of dense periodic Au-HNPs. These Au-HNPs are arranged in a square unit cell with a 250 nm pitch. The carefully controlled fabrication process resulted in Au-HNPs with nanoscale dimensions over the Au-HNP dimensions such as an 80 ± 2 nm thick solid base with a 133 ± 4 nm diameter, and a 170 ± 10 nm high nano-rim with a 14 ± 3 nm sidewall rim-thickness. The plasmonic optical response is assessed with FDTD-modeling and reveals that the highest field enhancement is at the top of the hollow nanopillar rim. The modeled field enhancement factor (EF) is compared to the experimental analytical field enhancement factor, which shows to pair up with ca. 10(3) < EF < 10(4) and ca. 10(3) < EF < 10(5) for excitation wavelengths of 633 and 785 nm. From a broader perspective, our results can stimulate the use of Au-HNPs in the fields of plasmonic sensors and spectroscopy. |
format | Online Article Text |
id | pubmed-8386417 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | RSC |
record_format | MEDLINE/PubMed |
spelling | pubmed-83864172021-09-01 A wafer-scale fabrication method for three-dimensional plasmonic hollow nanopillars Jonker, D. Jafari, Z. Winczewski, J. P. Eyovge, C. Berenschot, J. W. Tas, N. R. Gardeniers, J. G. E. De Leon, I. Susarrey-Arce, A. Nanoscale Adv Chemistry Access to nanofabrication strategies for crafting three-dimensional plasmonic structures is limited. In this work, a fabrication strategy to produce 3D plasmonic hollow nanopillars (HNPs) using Talbot lithography and I-line photolithography is introduced. This method is named subtractive hybrid lithography (SHL), and permits intermixed usage of nano-and-macroscale patterns. Sputter-redeposition of gold (Au) on the SHL resist pattern yields large areas of dense periodic Au-HNPs. These Au-HNPs are arranged in a square unit cell with a 250 nm pitch. The carefully controlled fabrication process resulted in Au-HNPs with nanoscale dimensions over the Au-HNP dimensions such as an 80 ± 2 nm thick solid base with a 133 ± 4 nm diameter, and a 170 ± 10 nm high nano-rim with a 14 ± 3 nm sidewall rim-thickness. The plasmonic optical response is assessed with FDTD-modeling and reveals that the highest field enhancement is at the top of the hollow nanopillar rim. The modeled field enhancement factor (EF) is compared to the experimental analytical field enhancement factor, which shows to pair up with ca. 10(3) < EF < 10(4) and ca. 10(3) < EF < 10(5) for excitation wavelengths of 633 and 785 nm. From a broader perspective, our results can stimulate the use of Au-HNPs in the fields of plasmonic sensors and spectroscopy. RSC 2021-07-07 /pmc/articles/PMC8386417/ /pubmed/34485816 http://dx.doi.org/10.1039/d1na00316j Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/ |
spellingShingle | Chemistry Jonker, D. Jafari, Z. Winczewski, J. P. Eyovge, C. Berenschot, J. W. Tas, N. R. Gardeniers, J. G. E. De Leon, I. Susarrey-Arce, A. A wafer-scale fabrication method for three-dimensional plasmonic hollow nanopillars |
title | A wafer-scale fabrication method for three-dimensional plasmonic hollow nanopillars |
title_full | A wafer-scale fabrication method for three-dimensional plasmonic hollow nanopillars |
title_fullStr | A wafer-scale fabrication method for three-dimensional plasmonic hollow nanopillars |
title_full_unstemmed | A wafer-scale fabrication method for three-dimensional plasmonic hollow nanopillars |
title_short | A wafer-scale fabrication method for three-dimensional plasmonic hollow nanopillars |
title_sort | wafer-scale fabrication method for three-dimensional plasmonic hollow nanopillars |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8386417/ https://www.ncbi.nlm.nih.gov/pubmed/34485816 http://dx.doi.org/10.1039/d1na00316j |
work_keys_str_mv | AT jonkerd awaferscalefabricationmethodforthreedimensionalplasmonichollownanopillars AT jafariz awaferscalefabricationmethodforthreedimensionalplasmonichollownanopillars AT winczewskijp awaferscalefabricationmethodforthreedimensionalplasmonichollownanopillars AT eyovgec awaferscalefabricationmethodforthreedimensionalplasmonichollownanopillars AT berenschotjw awaferscalefabricationmethodforthreedimensionalplasmonichollownanopillars AT tasnr awaferscalefabricationmethodforthreedimensionalplasmonichollownanopillars AT gardeniersjge awaferscalefabricationmethodforthreedimensionalplasmonichollownanopillars AT deleoni awaferscalefabricationmethodforthreedimensionalplasmonichollownanopillars AT susarreyarcea awaferscalefabricationmethodforthreedimensionalplasmonichollownanopillars AT jonkerd waferscalefabricationmethodforthreedimensionalplasmonichollownanopillars AT jafariz waferscalefabricationmethodforthreedimensionalplasmonichollownanopillars AT winczewskijp waferscalefabricationmethodforthreedimensionalplasmonichollownanopillars AT eyovgec waferscalefabricationmethodforthreedimensionalplasmonichollownanopillars AT berenschotjw waferscalefabricationmethodforthreedimensionalplasmonichollownanopillars AT tasnr waferscalefabricationmethodforthreedimensionalplasmonichollownanopillars AT gardeniersjge waferscalefabricationmethodforthreedimensionalplasmonichollownanopillars AT deleoni waferscalefabricationmethodforthreedimensionalplasmonichollownanopillars AT susarreyarcea waferscalefabricationmethodforthreedimensionalplasmonichollownanopillars |