Cargando…
Predicting potentially hazardous chemical reactions using an explainable neural network
Predicting potentially dangerous chemical reactions is a critical task for laboratory safety. However, a traditional experimental investigation of reaction conditions for possible hazardous or explosive byproducts entails substantial time and cost, for which machine learning prediction could acceler...
Autores principales: | Kim, Juhwan, Gu, Geun Ho, Noh, Juhwan, Kim, Seongun, Gim, Suji, Choi, Jaesik, Jung, Yousung |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8386654/ https://www.ncbi.nlm.nih.gov/pubmed/34522300 http://dx.doi.org/10.1039/d1sc01049b |
Ejemplares similares
-
Machine-enabled inverse design of inorganic solid materials: promises and challenges
por: Noh, Juhwan, et al.
Publicado: (2020) -
Understanding potential-dependent competition between electrocatalytic dinitrogen and proton reduction reactions
por: Choi, Changhyeok, et al.
Publicado: (2021) -
Active learning with non-ab initio input features toward efficient CO(2) reduction catalysts
por: Noh, Juhwan, et al.
Publicado: (2018) -
Generative Adversarial Networks for Crystal Structure
Prediction
por: Kim, Sungwon, et al.
Publicado: (2020) -
Correction to “Generative Adversarial Networks
for Crystal Structure Prediction”
por: Kim, Sungwon, et al.
Publicado: (2022)