Cargando…
Research on Classification of COVID-19 Chest X-Ray Image Modal Feature Fusion Based on Deep Learning
Most detection methods of coronavirus disease 2019 (COVID-19) use classic image classification models, which have problems of low recognition accuracy and inaccurate capture of modal features when detecting chest X-rays of COVID-19. This study proposes a COVID-19 detection method based on image moda...
Autores principales: | Ji, Dongsheng, Zhang, Zhujun, Zhao, Yanzhong, Zhao, Qianchuan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8387167/ https://www.ncbi.nlm.nih.gov/pubmed/34457220 http://dx.doi.org/10.1155/2021/6799202 |
Ejemplares similares
-
Multi-modal fusion of deep transfer learning based COVID-19 diagnosis and classification using chest x-ray images
por: Reddy, A. Siva Krishna, et al.
Publicado: (2022) -
Fusion-Extracted Features by Deep Networks for Improved COVID-19 Classification with Chest X-ray Radiography
por: Lin, Kuo-Hsuan, et al.
Publicado: (2023) -
Deep feature fusion classification network (DFFCNet): Towards accurate diagnosis of COVID-19 using chest X-rays images
por: Liu, Jingyao, et al.
Publicado: (2022) -
Deep Learning Classification of Tuberculosis Chest X-rays
por: Goswami, Kartik K, et al.
Publicado: (2023) -
COVID-19 Detection from Chest X-ray Images Using Feature Fusion and Deep Learning
por: , Nur-A-Alam, et al.
Publicado: (2021)