Cargando…
Predicting base editing outcomes with an attention-based deep learning algorithm trained on high-throughput target library screens
Base editors are chimeric ribonucleoprotein complexes consisting of a DNA-targeting CRISPR-Cas module and a single-stranded DNA deaminase. They enable transition of C•G into T•A base pairs and vice versa on genomic DNA. While base editors have great potential as genome editing tools for basic resear...
Autores principales: | Marquart, Kim F., Allam, Ahmed, Janjuha, Sharan, Sintsova, Anna, Villiger, Lukas, Frey, Nina, Krauthammer, Michael, Schwank, Gerald |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8387386/ https://www.ncbi.nlm.nih.gov/pubmed/34433819 http://dx.doi.org/10.1038/s41467-021-25375-z |
Ejemplares similares
-
Predicting prime editing efficiency and product purity by deep learning
por: Mathis, Nicolas, et al.
Publicado: (2023) -
Loss of Rnf31 and Vps4b sensitizes pancreatic cancer to T cell-mediated killing
por: Frey, Nina, et al.
Publicado: (2022) -
Replacing the SpCas9 HNH domain by deaminases generates compact base editors with an alternative targeting scope
por: Villiger, Lukas, et al.
Publicado: (2021) -
In vivo cytidine base editing of hepatocytes without detectable off-target mutations in RNA and DNA
por: Villiger, Lukas, et al.
Publicado: (2021) -
AttentionDDI: Siamese attention-based deep learning method for drug–drug interaction predictions
por: Schwarz, Kyriakos, et al.
Publicado: (2021)